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Preface

Owing to the rapid advances in the physical sciences and engineering, the de-
mand for higher-level mathematics is increasing yearly. This book is designed
for advanced undergraduates and graduate students who are interested in the
mathematical aspects of their own fields of study. The reader is assumed to
have a knowledge of undergraduate-level calculus and linear algebra.

There are any number of books available on mathematics for physics and
engineering but they all fall into one of two categories: the one emphasizes
mathematical rigor and the exposition of definitions or theorems, whereas the
other is concerned primarily with applying mathematics to practical prob-
lems. We believe that neither of these approaches alone is particularly helpful
to physicists and engineers who want to understand the mathematical back-
ground of the subjects with which they are concerned. This book is different
in that it provides a short path to higher mathematics via a combination of
these approaches. A sizable portion of this book is devoted to theorems and
definitions with their proofs, and we are convinced that the study of these
proofs, which range from trivial to difficult, is useful for a grasp of the general
idea of mathematical logic. Moreover, several problems have been included at
the end of each section, and complete solutions for all of them are presented
in the greatest possible detail. We firmly believe that ours is a better peda-
gogical approach than that found in typical textbooks, where there are many
well-polished problems but no solutions.

This book is essentially self-contained and assumes only standard under-
graduate preparation such as elementary calculus and linear algebra. The
first half of the book covers the following three topics: real analysis, func-
tional analysis, and complex analysis, along with the preliminaries and four
appendixes. Part I focuses on sequences and series of real numbers of real
functions, with detailed explanations of their convergence properties. We also
emphasize the concepts of Cauchy sequences and the Cauchy criterion that
determine the convergence of infinite real sequences. Part II deals with the
theory of the Hilbert space, which is the most important class of infinite vec-
tor spaces. The completeness property of Hilbert spaces allows one to develop
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various types of complex orthonormal polynomials, as described in the mid-
dle of Part II. An introduction to the Lebesgue integration theory, a subject
of ever-increasing importance in physics, is also presented. Part III describes
the theory of complex-valued functions of one complex variable. All relevant
elements including analytic functions, singularity, residue, continuation, and
conformal mapping are described in a self-contained manner. A thorough un-
derstanding of the fundamentals treated is important in order to proceed to
more advanced branches of mathematical physics.

In the second half of the volume, the following three specific topics are
discussed: Fourier analysis, differential equations, and tensor analysis. These
three are the most important subjects in both engineering and the physical
sciences, but their rigorous mathematical structures have hardly been covered
in ordinary textbooks. We know that mathematical rigor is often unnecessary
for practical use. However, the blind usage of mathematical methods as a tool
may lead to a lack of understanding of the symbiotic relationship between
mathematics and the physical sciences. We believe that readers who study
the mathematical structures underlying these three subjects in detail will ac-
quire a better understanding of the theoretical backgrounds associated with
their own fields. Part IV describes the theory of Fourier series, the Fourier
transform, and the Laplace transform, with a special emphasis on the proofs
of their convergence properties. A more contemporary subject, the wavelet
transform, is also described toward the end of Part IV. Part V deals with or-
dinary and partial differential equations. The existence theorem and stability
theory for solutions, which serve as the underlying basis for differential equa-
tions, are described with rigorous proofs. Part VI is devoted to the calculus of
tensors in terms of both Cartesian and non-Cartesian coordinates, along with
the essentials of differential geometry. An alternative tensor theory expressed
in terms of abstract vector spaces is developed toward the end of Part VI.

The authors hope and trust that this book will serve as an introductory
guide for the mathematical aspects of the important topics in the physical
sciences and engineering.

Sapporo, Hiroyuki Shima
November 2009 Tsuneyoshi Nakayama
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1

Preliminaries

This chapter provides the basic notation, terminology, and abbreviations that
we will be using, particularly in real analysis, and is designed to serve a
reference rather than as a systematic exposition.

1.1 Basic Notions of a Set

1.1.1 Set and Element

A set is a collection of elements (or points) that are definite and separate
objects. If @ is an element of a set .S, we write

a€s.

Otherwise, we write

agS

to indicate that a does not belong to S. If a set contains no elements, it is
called an empty set and is designated by (.

A set may be defined by listing its elements or by providing a rule that
determines which elements belong to it. For example, we write

X = {mlaanx:’n"' 73;71}

to indicate that X is a set with n elements: x1,x9, - x,. When a set con-
tains a finite (infinite) number of elements, it is called a finite (infinite
set).

A set X is said to be a subset of Y if every element in X is also an element
in Y. This relationship is expressed as

XCY.
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When X CY and Y C X, the two sets have the same elements and are said
to be equal, which is expressed by

X =Y.

But when X CY and X # Y, then X is called a proper subset of Y, and
we use the more specific expression

XcCY.
The intersection of two sets X and Y, denoted by
xXny,
consists of elements that are contained in both X and Y. The union
XUy

consists of all the elements contained in either X or Y, including those con-
tained in both X and Y. When the two sets X and Y have no element in
common (i.e., when X NY =), X and Y are said to be disjoint.

For two sets A and B, we define their difference by the set

{r:ze€A, ¢ B}
and denote it by A\B (see Fig. 1.1). In particular, if A contains all the sets

under discussion, we say that A is the universal set and A\B is called the
complementary set or complement of A.

A
A B
B
/
A\B /
A\B

Fig. 1.1. Left: The difference of two sets A and B. Right: The complementary set
or complement of B in A
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1.1.2 Number Sets
Our abbreviations for fundamental number systems are given by

N : The set of all positive integers not including zero.
Z : The set of all integers.

Q : The set of all rational numbers.

R : The set of all real numbers.

C : The set of all complex numbers.

The symbol R™ denotes an n-dimensional Euclidean space (see Sects.
4.1.3 and 19.2.3). Points in R™ are denoted by bold face, say, x; the coordi-
nates of & are denoted by the ordered n-tuple (z1, 22, - , %, ), where z; € R.
We also use the extended real number defined by

R=RU{—0c0,00}.

1.1.3 Bounds

The precise terminology for bounds of real number sets follow. Meanwhile we
assume S to be a set of real numbers.

#® Bounds of a set:
1. A real number b such that x < b for all z € S is called an upper
bound of S.

2. A real number a such that x > a for all z € S is called a lower
bound of S.

Figure 1.2 illustrates the point. We say that a set S is bounded above or
bounded below if it has an upper bound or a lower bound, respectively.
In particular, when a set S is bounded above and below simultaneously, it
is a bounded set. If a set S is not bounded, then it is said to be an un-
bounded set.

It follows from these definitions that if b is an upper bound of S, any
number greater than b will also be an upper bound of S. Thus it makes sense
to seek the smallest among such upper bounds. This is also the case for a
lower bound of S if it is bounded below. In fact, the two extrema bounds, the
smallest and the largest, are referred to by specific names as follows:

& Least upper bound:
An element b € R is called the least upper bound (abbreviated by
L.u.b.) or supremum, of S if
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(i) b is an upper bound of S, and
(ii) there is no upper bound of S that is smaller than b.

& Greatest lower bound:
An element a € R is called the greatest lower bound (abbreviated
by g.l.b.) or infimum, if
(i) ais a lower bound of S, and
(ii) there is no lower bound of S that is greater than a.

S
+—O O t x
a ag by b
S
—@ ® f x
a ag b, b
S
T . O t X
a ag by b
S
+—O O t X
a ag b, b

Fig. 1.2. In all the figures, the points a and b are lower and upper bounds of S,
respectively. In particular, the point ag is the greatest lower bound, and the by, is
the least upper bound

In symbols, the supremum and infimum of S are denote, respectively, by

sup S and inf S.

We must emphasize the fact that the supremum and infimum of the set .S
may or may not belong to S. For instance, the set S = {z: x < 1} has the
supremum 1, which it does not belong to S. Nevertheless, particularly when
S is finite, we have

sup S = max.S and infS = min S,

where max S and min S denote the maximum and minimum of S, respec-
tively, both of which belong to S.

1.1.4 Interval

When a set of real numbers is bounded above or below (or both), it is referred
to as an interval; there are several classes of intervals as listed below.
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& Intervals: Given a real variable x, the set of all values of z such that
1. a <z <bis a closed interval, denoted by |[a, b].

2. a < z < bis a bounded open interval, denoted by (a,b).

3. a < z and z < b are unbounded open intervals, denoted by (a, c0)
and (—o0,b), respectively.

Sets of points {z} such that
a<x<ba<zr<b a<uxz, x<b

may be referred to as semiclosed intervals; see Sect. 1.1.5 for more rigorous

definitions. Every interval I; contained in another interval I, is a subinterval
of IQ.

1.1.5 Neighborhood and Contact Point

The following is a preliminary definition that will be significant in the discus-
sions on continuity and convergence properties of sets and functions.

& Neighborhoods:
Let x € R. A set V C R is called a neighborhood of x if there is a
number € > 0 such that

(x—e,x+e)CV.

In line with the idea of neighborhoods, we introduce the following important
concept (see Fig. 1.3):

& Contact points:

Assume a point x € R and a set S C R. Then « is called a contact
point of S if and only if every neighborhood of z contains at least one
point of S.

Remark. A contact point of S may or may not belong to S. In contrast, a
point € S is necessarily a contact point of S.

Obviously, every point of S is a contact point of S. In particular, when S is a
single-element set given by S = {z¢} with 2y € R, then z( is a contact point
of S since every neighborhood of xg contains z itself. The collection of all
contact points of a set S is called the closure of S and is denoted by [S].
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S ol |
O———— @ O———>
X
o]
B e e e L S }CaseA
X
\%
oo
X )
T
—>0 o—e—+—0 Case B
X
st
e O— ) O—— Case C
X

Fig. 1.3. Case A: z is a limit point (and thus a contact point) of S. Case B: x is
not a contact point of S. Case C: x is an isolated point (and thus a contact point)
of S

Contact points can be classified as follows (see again Fig. 1.3):

& Limit points:
A contact point z € R is called a limit point of the set S C R if and
only if every neighborhood V of = contains a point of S different from x.

# Isolated points:
A contact point z is called an isolated point of S if and only if x has
a neighborhood V' in which z is the only point belonging to S.

In plain words, a limit point x is a point such that every interval (x —e, z+¢)
contains an infinite number of points, regardless of the smallness of €. A
limit point may be referred to as a cluster point or accumulation point,
depending on the context. The symbol S is commonly used to denote the set
of limit points of S.

Ezamples 1. If S is the set of rational numbers in the interval [0, 1], then
every point of [0, 1], rational or not, is a limit point of S.

2. The integer set Z has no limit point; it has an infinite number of isolated
points.

3. The origin is the limit point of the set {1/m: m € N}.
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Remark. From the definition, a limit point of a set need not belong to the set.
For instance, = 1 is the limit point of the set S ={z: z € R, > 1}, but
it does not belong to S. In contrast, an isolated point of S must lie in S.

Limit points are further divided into two classes. A limit point x of a set S
is called an interior point of S if and only if x has a neighborhood V' C S.
Otherwise, it is called a boundary point of S. Figure 1.4 is a schematic
illustration of the difference between interior and boundary points.

@ I I O X
a b c d

Fig. 1.4. All four points are limit points of S. Among them, b and ¢ are interior
points, whereas a and d are boundary points

1.1.6 Closed and Open Sets

Closed and open sets are defined in terms of the concepts of contact points
and closure. Recall that a closure of S, denoted by [S], is a set of all contact
points of S, which is a union of the two sets: all limit and all isolated points
of S.

& Closed sets:
A set S C Ris closed if [S] = S, i.e., if S coincides with its own closure.

& Open sets:
A set S C R is open if S consists entirely of its interior points and has
no boundary points.

It follows intuitively that a set S C R is open if and only if its complemen-
tary set is closed. The proof is given in Exercise 4 in this chapter. Note that
the condition [S] # S is inconclusive as to whether S is open or not.

Ezamples 1. Every single-element set S = {x} with ¢ € R is closed since
[S]=S.

2. Every set consisting of a finite number of points is closed.

3. For any real number z, the set R\{x} is open since {z} is closed.

4. The intervals [a, b], [a,00), and (—o0, b] are all closed, which is proven by
considering their closures.

5. The interval [a, b) is neither closed nor open. In fact, it is not closed since
it excludes its boundary point b and it is not open since it contains its
boundary point a.
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Exercises

1. Give the supremum and infimum of each of the following sets:
(1) S={z: 0<x <5}
(2) S={r:xe€Q and x% < 2}.
(3) S={z:2=3+2%, neN}L

Solution: (1) supS = 5, inf S = 0. (2) sup S = v/2, inf S = 0.
(3)supS =4,infS=3. &

2. Suppose S to be any of the intervals: (a, b), [a, ), (a,b], or [a, b]. Show that

supS =0b, infS =a.

Solution: Take S = (a,b). Since z < b for all x € S, b serves
as one of upper bounds of S. We show that b is surely the least
upper bound. To see this, we first assume that u is another upper
bound of S such that u < b; then a < v < (u+ b)/2 < b. This
implies that
u+0b u+b

> €S and u< 7
which contradicts the assumption that u is an upper bound of S.
Hence, u > b; i.e., any upper bound other than b must be larger
than b. We thus conclude that b = sup S. The proof is similar for
the other three cases. &

3. Show that the set of integers has no limit point, i.e., Z = 0.

Solution: Take any z € Z, and let ¢ = min{|jn —z|: n € Z}.
The interval (z—e, x+¢) contains no integers other than x; hence,
x & Z. Since this is the case for any x € Z, we conclude that Z
is totally composed of isolated points. &

4. Show that a set S C R is open if and only if its complementary set R\S
is closed.

Solution: If S is open, then every point € S has a neighborhood
contained in S. Therefore no point & € S can be a contact point of
R\S. In other words, if x is a contact point of R\S, then x € R\S,
i.e.,, R\S is closed.

Conversely, if R\S is closed, then any point « € S must have a
neighborhood contained in S, since otherwise every neighborhood
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of  would contain points of R\S, i.e., z would be a contact point
of R\S not in R\S. Therefore S is open. &

1.2 Conditional Statements

Phrases such as if... then..., and ... if and only if ... are frequently used to
connect simple statements that can be described as either true or false. For
the sake of typographical convenience, there are conventional logical symbols
for representing such phrases.

Suppose P and @) are two different statements. The compound statements

if P then @

and
P implies Q

mean that if P is true then @ is true. This is written symbolically as
P=Q. (1.1)
We say that

P is a sufficient condition for @@

or

@ is a necessary condition for P.

In the above context, P stands for the hypothesis or assumption, and @ is the
conclusion.

Remark. To prove the implication (1.1) in actual problems, it suffices to ex-
clude the possibility that P is true and @ is false. This may be done in one
of three ways.

1. Assume that P is true and prove that @ is true (direct proof).

2. Assume that @ is false and prove that P is false (contrapositive proof).

3. Assume that P is true and @ is false, and then prove that this leads to a
contradiction (proof by contradiction).

When P implies @ and @) implies P, we abbreviate this to

P = Q,
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and we say that
P is equivalent to @

or, more commonly,

P if and only if Q.
This also means that P is a necessary and sufficient condition for Q.
Ezamples Observe that

2=1land z=-1 = 22 =1.

r=1==z
Conversely, we see that
?=1= z=—1lorl.

Therefore, we conclude that

?=1 < 2z¢c{-1,1}

1.3 Order of Magnitude

1.3.1 Symbols O, o, and ~

We use the notations O, o, and ~ to express orders of magnitude. To explain
their use, we consider the behavior of functions f(z) and g(x) in a neighbor-
hood of a point xzg.

1. We write
f(z) =0(g(x)), z— o

if there exists a positive constant A such that

[f(z)] < Alg ()]

for all values of = in some neighborhood of z.

2. We write
f(@) =o(g(z)), = —xo
§ @)
. x
A | T
3. We write
f(@) ~g(x), x—x0
if
lim M =1
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In addition to the formal definitions above, we summarize the actual mean-
ing of these symbols:

1. f(z) = O(g(x)) means that f(z) does not grow faster than g(z) as x — xo.
2. f(x) = o(g(z)) means that f(z) grows more slowly than g(x) as = — xg.
3. f(x) ~ g(x) means that f(x) and g(x) grow at the same rate as x — x.

We occasionally employ the symbols
f(z) =0(1) as x — xo.

This simply means that f(z) is bounded on the order of 1. The symbol
f(z) =0(1) as x — xg

means that f(x) approaches zero as © — xg.

Ezamples The relations 1-3 below hold for z — oc.

1 1 0 1 1 1 1 1
. = — —— =0 = ~ .
1422 2]’ 1422 x) 14+x2 22

9 1 1 L0 1 1 1 " 1
. = — — ——=—40|—=).
1+22 22 x4 )7 1422 22 x?

The following hold for z — 0:
4. sinz=0(1), sinz~az, cosz=1+0 (2?).

1.3.2 Asymptotic Behavior

Asymptotic behavior of f(z) as + — a can be quantified by using the powers
of (x — a) as comparison functions. As an example, suppose that a function
f(z) satisfies the relation

f(z)=0((z—a)?) for x —a (1.2)

for some real number p = pg. Then, the relation (1.2) clearly holds for all p
for p < pg, and it may or may not hold for some p if p > pg. Thus we can
define the supremum of such p’s that satisfy (1.2), and denote it by g, i.e.,

q=sup{p | f(z) = O((z —a)?)}. (1.3)

In this case, we say that f vanishes at x = a to order ¢. The quantity ¢
defined by (1.3) is useful for describing the asymptotic behavior of f(z) in the
vicinity of = = a.
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Remark. Note that (1.3) itself does not imply that
flz)=0((z—-a)?), x—a.

For instance, the function f(x) = logz defined within the interval (0, 1) yields
q = 0, since for x — 0,

=0(?) p<O,
IOggC{;éO(xp) p > 0.

But it is obvious that logz # O(1).

1.4 Values of Indeterminate Forms

1.4.1 ’Hépital’s Rule

A function f(x) of the form u(x)/v(z) is not defined for z = a if f(a) takes
the form 0/0. Still, if the limit lim,_,, f(z) exists, then it is often desirable
to define f(a) = lim,—, f(z). In such a case, the value of the limit can be
evaluated by using the following theorem:

& I’Hopital’s rule:

Let u(a) = v(a) = 0. If there exists a neighborhood of = a such that
(i) v(x) # 0 except for x = a, and
(ii) v/(x) and v'(x) exist and do not vanish simultaneously, then,

/
lim = lim e
z—a U(l‘) z—a U’(x)

whenever the limit on the right exists.

For the proof of the theorem, see Exercise 3 in Sect. 8.1.

Remark. If o/ (x) /v'(z) is itself an indeterminate form, the above method may
be applied to u'(x)/v’(z) in turn, so that

If necessary, this process may be continued.
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1.4.2 Several Examples

In the following, we show several examples of indeterminate forms other
than the form of 0/0 previously discussed. Often functions f(x) of the forms
u(z)v(z), [u(z)]*®, and u(x) — v(x) can be reduced to the form p(x)/q(x)
with the aid of the following relations:

(@) o)
o(e) ~ 1ulz)’

[u(z)]"™ = €9 where g(z)

u(z)v(z)
_ log u(x) _ logv(x)
Vo(z)  1/u(x)’

o)~ ) .
u(x) —v(z) = —01  =log h(zx), where h(x) =

ev(z)”

After the reduction, the ’'Hépital method given in Sect. 1.4.1 becomes appli-
cable.
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2

Real Sequences and Series

Abstract In this chapter, we deal with the fundamental properties of sequences and
series of real numbers. We place particular emphasis on the concept of “convergence,”
a thorough understanding of which is important for the study of the various branches
of mathematical physics that we are concerned with subsequent chapters.

2.1 Sequences of Real Numbers

2.1.1 Convergence of a Sequence

This section describes the fundamental definitions and ideas associated with
sequences of real numbers (called real sequences). We must emphasize
that the sequence

(xn:m € N)

is not the same as the set
{zn:n €N}

In fact, the former is the ordered list of z,,, some of which may be repeated,
whereas the latter is merely the defining range of x,,. For instance, the constant
sequence x,, = 1 is denoted by (1,1,1,---), whereas the set {1} contains only
one element.

We start with a precise definition of the convergence of a real sequence,
which is an initial and crucial step for various branches of mathematics.

& Convergence of a real sequence:

A real sequence (z,) is said to be convergent if there exists a real
number z with the following property: For every € > 0, there is an integer
N such that

n>N = |z, —z|<e. (2.1)
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We must emphasize that the magnitude of ¢ is arbitrary. No matter how
small an € we choose, it must always be possible to find a number N that will
increase as € decreases.

Remark. In the language of neighborhoods, the above definition is stated as
follows: The sequence (x,,) converges to x if every neighborhood of x contains
all but a finite number of elements of the sequence.

When (z,) is convergent, the number x specified in this definition is called
a limit of the sequence (z,), and we say that x, converges to x. This is
expressed symbolically by writing
lim z, =z,
n—oo
or simply by
Ty — T.

If (x,,) is not convergent, it is called divergent.

Remark. The limit 2 may or may not belong to (z,,); this situation is similar
to the case of the limit point of a set of real numbers discussed in Sect. 1.1.5.

An example in which x = lim z,, but x # z,, for any n is given below.

Ezamples Suppose that a sequence (z,,) consisting of rational numbers is de-
fined by

(zn) = (3.1, 3.14, 3.142, -+ | @y, --),
where z,, € Q is a rational number to n decimal places close to 7. Since the
difference |z,, — 7| is less than 10™", it is possible to find an N for any & > 0
such that

n>N = |z,—7|<e.

This means that

lim z, = .
n—oo

However, as the limit, 7, is an irrational number it is not in Q.

Remark. The above example indicates that only a restricted class of convergent
sequences has a limit in the same sequence.

2.1.2 Bounded Sequences

In the remainder of this section, we present several fundamental concepts
associated with real sequences. We start with the boundedness properties of
sequences.
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& Bounded sequences:
A real sequence (z,,) is said to be bounded if there is a positive number
M such that
|xn| < M for all n € N.

The following is an important relation between convergence and boundedness
of a real sequence:

& Theorem:
If a sequence is convergent, then it is bounded.

Proof Suppose that x,, — x. If we choose ¢ = 1 in (2.1), there exists an integer
N such that
|xy — 2| <1 for all n > N.

Since |zp| — |z| < |2, — ], it follows that
|z,| <14 |x| forall n> N.
Setting M = max{|z1],|z2|, -, |xn_1],1+ |z|} yields
|zn| < M for all n € N,
which means that (z,,) is bounded. &

Remark. Observe that the converse of the theorem is false. In fact, the sequence
(1a71717713"' ’(71)'”,,,,)

is divergent, although it is bounded.

2.1.3 Monotonic Sequences
Another important concept in connection with real sequences is monotonicity,

defined as follows:

& Monotonic sequences:
A sequence () is said to be
1. increasing (or monotonically increasing) if @, 1 > x,, for all n € N,

2. strictly increasing if z, 1 > x,, for all n € N,
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3. decreasing (or monotonically decreasing) if 2,11 < x,, for alln € N,
and

4. strictly decreasing if z,, .1 < x,, for all n € IN.

These four kinds of sequences are collectively known as monotonic
sequences. Note that a sequence (x,) is increasing if and only if (—z,,) is
decreasing. Thus, the properties of monotonic sequences can be fully investi-
gated by restricting ourselves solely to increasing (or decreasing) sequences.

Once a sequence assumes monotonic properties, its convergence is deter-
mined only by its boundedness, as stated below.

& Theorem:

A monotonic sequence is convergent if and only if it is bounded. More
specifically,
(i) If (x,) is increasing and bounded above, then its limit is given by

lim z, = supx,.
n—oo

(ii) If (z,,) is decreasing and bounded below, then

lim z, = inf z,.
n—oo

Proof If (z,,) is convergent, then it must be bounded as proven earlier (see
Sect. 2.1.2). Now we consider the converses for cases (i) and (ii).

(i) Assume (x,,) is increasing and bounded. The set S = {z,,} will then have
the supremum denoted by sup S = z. By the definition of the supremum,
for arbitrary small € > 0 there is an xz € S such that

TN > T —E. (2.2)
Since x,, is increasing, we obtain
x, > xy forall n> N. (2.3)
Moreover, since x is the supremum of S, we have
x> x, forall ne N. (2.4)
From (2.2), (2.3), and (2.4), we arrive at

|z, —2|=2—x, <x—2ay <e forall n>N,
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which gives us the desired conclusion, i.e,

lim z, =z =supS.
n—oo

(ii) If (z,) is decreasing and bounded, then (—z,,) is increasing and bounded.
Hence, from (i), we have

lim (—x,) = sup(—29).

n—oo

Since sup(—S) = —inf S, it follows that
lim z,, =infS. &

n—oo

2.1.4 Limit Superior and Limit Inferior

We close this section by introducing two specific limits an any bounded
sequence. Let (z,) be a bounded sequence and define two sequences (y)
and (z,) as follows:

yn = sup{ag : k >n}, (2.5)
zn = inf{zy : k> n}.

Note that y,, and z, differ, respectively, from sup{z,} and inf{x, }. It follows
from (2.5) that

yp =sup{zr: k>1} >y =sup{ap: k>2}>ys -,

which means that the sequence (y,,) is monotonically decreasing and bounded
below by inf x,,. Thus in view of the theorem in Sect. 2.1.3, the sequence (y;,)
must be convergent. The limit of (y,) is called the limit superior or the
upper limit of (z,,) and is denoted by
limsup, (or lim ).
n—oo

Likewise, since (z,) is increasing and bounded above by sup x,,, it possesses
the limit known as the limit inferior or lower limit of x,, denoted by

liminfx, (orlim x,).
n—oo

In terms of the two specific limits, we can say that a bounded sequence (x,)
converges if and only if

lim z,, = limsup z,, = liminf x,,.
n—00 n—00 n—00

(A proof will be given in Exercise 4 in Sect. 2.1.4.) Note that by definition, it
readily follows that

limsup x,, > liminf z,,

n— oo n—00
lim sup(—x,) = — liminf z,,.
n—0o0

n—oo
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Ezamples 1. z, = (-1)" = limsupz, =1, liminfz, = —1.
n— oo n—0oo

1 . ..
2. 2z, =(-1)"+— = limsupz, =1, liminfz, = —1.

n n—oo n—:o0

—_1)" —_1)"
3. o, =1+ (=1) , Top_1 = (=1) , = limsupz, =1, liminfz, =0.
n n Nn—00 n—o0

4. (z,) =(2,0,-2,2,0,—-2,---) = limsupa, =2, liminfz, = —2.
n—oo n—oo
The four cases noted above are illustrated schematically in Fig. 2.1. All
the sequences (x,) are not convergent and thus the limit lim,_ ., x, does
not exist. This fact clarifies the crucial difference between lim,,_. o z, and
limsup,, ., @ (or iminf,, . ).

Xn
1 r 3 x2 xS
A x A x
.. 3 3 = °
0 s oed
..A :-.
-1 ¢ ’
X1 *4
Xn
Y *2
..., 4 X6
1 ......... LT D
0 N ) "
_1 xl ----- L ZLT PP o
X3 Xs
Xn
h x2
L I X4 6
1 ...... D hLLL T TT D
0 .
L PRSI (54
e X3 s
X1

Fig. 2.1. All the sequences of {z,} in the figures do not converge, but they all
possess limsup z,, = 1 and liminfx, = —1
n—oo n—o0
The limit superior of z,, has the following features and similar features are
found for the limit inferior.
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& Theorem:
1. For any small € > 0, we can find an N such that

n>N = x,<limsupz, + .

n—oo

2. For any small € > 0, there are an infinite number of terms of z,, such
that
limsupx, — e < x,.

n—oo

Proof 1. Recall that limsupx,, = lim y,, where y,, is defined in (2.5). For

any € > 0, there is an integer N such that

n>N = limsupzx, —¢ <y, <limsupz, + €.

n—oo n—o0

Since y,, > x,, for all n, we have

n>N = xz, <limsupz, +c. &

n—oo

2. Suppose that there is an integer m such that

n>m = limsupz, —¢c > z,.

n—oo

Then for all £ > n > m, we have

xr < limsupz, — ¢,

n—oo

which means that

Yn < limsupzx, —¢e for all n > m.

n—oo

In the limit of n — oo, we find a contradiction such that

limsup x,, <limsupz, — €.

n—oo n—oo

This completes the proof. &

Exercises

1. Prove that if the sequence (x,,) is convergent, then its limit is unique.
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Solution: Let x = limz,, and y = limz,, with the assumption
x # y. Then we can find a neighborhood V; of x and a neigh-
borhood V3 of y such that V3 NV, = (). For example, take
Vi=(@—caz+e)and Vo = (y — e,y + ), where € = |z — y|/2.
Since z,, — =z, all but a finite number of terms of the sequence
lie in V;. Similarly, since y,, — vy, all but a finite number of its
terms also lie in V5. However, these results contradict the fact that
V1 N Va = (0, which means that the limit of a sequence should be
unique. o
2. If x,, — x # 0, then there is a positive number A and an integer N such
that n > N = |z,| > A. Prove it.

Solution: Let ¢ = |z|/2, which is a positive number. Hence, there
is an integer N such that n > N = |z, —z| < e = ||z, | — |z]| < e.
Consequently, |z| — e < |z,] < |z| + ¢ for all n > N. From the
left-hand inequality, we see that |x,| > |z|/2, and we can take
M = |z|/2 to complete the proof. &

3. Prove that the sequence z,, = [1 + (1/n)]™ is convergent.

Solution: The proof is completed by observing that the sequence
is monotonically increasing and bounded. To see this, we use the
binomial theorem, which gives

- 1
Tp = E ncvn—ki]€
n

k=0

S () (-3 (-2
(=) (=0 ()

Likewise we have

1 1 1 1 2
pir =141+ (1-— )+ (1-——) (1=
T =1 +2!< n+1>+3!< n+1)< n+1)+

+(ni1)! (ln-1|-1> <1ni1>"'(1n11>'

Comparing these expressions for z,, and z,1, we see that every
term in z,, is no more than corresponding term in x,4;. In ad-
dition, z,4; has an extra positive term. We thus conclude that
Zpy1 > Xy, for all n € N, which means that the sequence (z,) is
monotonically increasing.

We next prove boundedness. For every n € N, we have x,, <
> rh_o(1/k!). Using the inequality 2"~! < n! for n > 1 (which can
be easily seen by taking the logarithm of both sides), we obtain
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"1 1—(1/2)"
n <1 =1+—"2 <3
T < +;2k71 T <

Thus (z,) is bounded above by 3. Thus, view of the theorem in
Sect. 2.1.3, the sequence is convergent. o
4. Denote z = limsupz,, and z = liminfz,. Prove that a sequence ()
converges to x if and only if z = 7 = z.

Solution: In view of the theorem in Sect. 2.1.4, it follows that
(—00,Z +¢) contains all but a finite number of terms of (z,,). The
same property applied to (—x,) implies that (z — &, 00) contains
all but a finite number of such terms. If x = & = z, then (x —
g,x + ¢€) contains all but a finite number of terms of (z,,). This is
the assertion that z,, — x.

Now suppose that x,, — z. For any € > 0, there is an integer N
such that n > N = z, < x+¢ = y, < x+¢, where y,, = sup{zy, :
k > n}, as was introduced in (2.5). Hence, Z < = 4 ¢. Since € > 0
is arbitrary, we obtain & < x. Working with the sequence (—z,),
whose limit is —z, following same procedure, we get £ > x. Since
x <Z,weconcludethat r =T =2. &

2.2 Cauchy Criterion for Real Sequences

2.2.1 Cauchy Sequence

To test the convergence of a general (nonmonotonic) real sequence, we have
thus far only the original definition given in Sect. 2.1.1 to rely on; in that
case we must first have a candidate for the limit of the sequence in question
before we can examine its convergence. Needless to say, it is more convenient
if we can determine the convergence property of a sequence without having to
guess its limit. This is achieved by applying the so-called Cauchy criterion,
which plays a central role in developing the fundamentals of real analysis.
To begin with, we present a preliminary notion for subsequent discussions.

& Cauchy sequence:

The sequence (z,,) is called a Cauchy sequence (or fundamental
sequence) if for every positive number ¢, there is a positive integer N
such that

m,n>N = |z, —x,|<e. (2.6)

This means that in every Cauchy sequence, the terms can be as close to one
another as we like. This feature of Cauchy sequences is expected to hold for
any convergent sequence, since the terms of a convergent sequence have to
approach each other as they approach a common limit. This conjecture is
ensured in part by the following theorem.
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& Theorem:
If a sequence (z,,) is convergent, then it is a Cauchy sequence.

Proof Suppose limz,, = x and € is any positive number. From hypothesis,
there exists a positive integer N such that

€

n>N = |xnfx|<§.

Now if we take m,n > N, then
€ €
|z, — 2| < 5 and |z, — x| < 3
It thus follows that
|2 — | < | — | + |2, — 2| <&,

which means that (z,) is a Cauchy sequence. &

This theorem naturally gives rise to a question as to whether converse
true. In other words, we would like to know whether all Cauchy sequences are
convergent or not. The answer is exactly what the Cauchy criterion states, as
we prove in the next subsection.

2.2.2 Cauchy Criterion

The following is one of the fundamental theorems of real sequences.

& Cauchy criterion:
A sequence of real numbers is convergent if and only if it is a Cauchy
sequence.

Bear in mind that the validity of this criterion was partly proven by demon-
strating the previous theorem (see Sect. 2.2.1). Hence, in order to complete
the proof of the criterion, we need only prove that every Cauchy sequence is
convergent. The following serves as a lemma for developing the proof.

#® Bolzano — Weierstrass theorem:
Every infinite and bounded sequence of real numbers has at least one
limit point in R. (The proof is given in Appendix A.)

We are now ready to prove that every Cauchy sequence is convergent.
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Proof (of the Cauchy criterion): Let (z,,) be a Cauchy sequence
and S = {z,, : n € N}. We consider two cases in turn: (i) the set S
is finite, and (ii) S is infinite.

(i) It follows from the hypothesis that given € > 0, there is an integer
N such that
m,n>N = |z, — Tn| <e. (2.7)

Since S is finite, one of the terms of the sequence (z,,), say z,
should be repeated infinitely often in order to satisfy (2.7). This
implies the existence of an m > N such that x,, = x. Hence, we
have
n>N = |z, —2x|<e,

which means that x,, — x.

(ii) Next we consider the case that S is infinite. It can be shown that
every Cauchy sequence is bounded (see Exercise 1). Hence, in
view of the Bolzano — Weierstrass theorem, the sequence ()

necessarily has a limit point x. We shall prove that x,, — x. Given
€ > 0, there is an integer N such that

m,n>N = |z, — T, <e.

From the definition of a limit point, we see that the interval (z —
g,x+¢) contains an infinite number of terms of the sequence (,).
Hence, there is an m > N such that @, € (x —e,z +¢), i.e., such
that |z, — x| < e. Now, if n > N, then

|zy, — x| < |2y — 2| + |20 — 2] < e+ =26,
which proves z,, — x.

The results for (i) and (ii) shown above indicate that every Cauchy
sequence (finite and infinite) is convergent. Recall again that its con-
verse, every convergent sequence is a Cauchy sequence, was proven ear-
lier in Sect. 2.2.1. This completes the proof of the Cauchy
criterion. &

Exercises

1. Show that every Cauchy sequence is bounded.

Solution: Let (z,) be a Cauchy sequence. Taking ¢ = 1, there is
an integer N such that

n>N = |z, —ay| <1
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Since |z,| — |zn| < |2 — 2|, we have
n>N = |z, <|zn|+ 1.

Thus |z, is bounded by max{|z1]|, |z2|, -, |en_1], |zNn]|+1}. &

2. Let 1 = 1, x5 = 2, and x,, = (xp—1 + Tp_2)/2 for all n > 3. Show that

(25,) is a Cauchy sequence.

Solution: Since for n > 3, z, — 21 = —(Tp_1 — Tp_2)/2, we use
the induction on n to obtain z,, — 2,41 = (=1)"/2"~! for all n €
N. Hence, if m > n, then

|xn - xm| S |In - xn+1| + |xn+l - xn+2| + -+ ‘xm—l - xm|

m—1 m—n—1

1 1 1
=Y 5T Ty X oF
k=n k=0
1 1—(1/2)m " 1 1 1

ool 1 (1/2) ol 1o (1/2)  2n—2°

Since 1/2"72 decreases monotonically with n, it is possible to
choose N for any € > 0 such that (1/2V~2) < . We thus conclude
that

1\ "2 1\ N2
m>n>N = |wn—xm|<<2> <<2) <eg,

which means that (z,,) is a Cauchy sequence. &

3. Suppose that the two sequences (x,,) and (y,) converge to a common limit

¢ and consider their shuffled sequence (z,) defined by
(21,22,28,24, -+ ) = (X1, Y1, T2, Y2, ).
Show that the sequence (z,) also converges to c.

Solution: Let € be any positive number. Since x,, — ¢ and y, — ¢,
there are two positive integers N7 and Ns such that

n>Ny = |z, —c¢/<eand n>Ny= |y, — | <e.

Define N = max{Ny, No}. Since xp = 2951 and yp = 29, for all
k € N, we have

E>N = |zp—c| =|zn-1—c| <ecand |yp — c| = |zor — ¢| < e.

Hence,n > 2N—1 = |z, —c| < &, which just means limz, =c. &
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4. Show that lim (a™/n*) — oo, where a > 1 and k > 0.

Solution: We consider three cases in turn: (i) k =1, (ii) k£ < 1,
and (iii) k£ > 1.
(i) Let k=1. Then set a = 1+ h to obtain

(n—1)

a"=(1+h)"=1+nh+" h2 4o >

2 2
which results in

a"/n=1+h)"/n>Mn—-1)h"/2 = co. (n — c0).

(ii) The case of k < 1 is trivial since a™/n* > a™/n for any n > 1.

(iii) If k > 1, then a'/* > 1 since a > 1. Hence, it follows from
the result of (i) that for any M > 1, we can find an n so that
n>M = a'/%/n > M. This means that

n l/k n1k
ak:[(a)l >Mk>M,
n n

which implies that a”/n* — co. &
5. Let x, = a"/n! with a > 0. Show that the sequence (z,,) converges to 0.

Solution: Let k be a positive integer such that & > 2a, and define
¢ = ak/k!. Then for any a > 0 and for any n > k, we have
a” a a a c c-2F  c.2F

— . = & = < . 2.8
Tkt 1 k+2 n Sk Tom n (28)
Since (2.8) holds for a sufficiently large n (> k), it also holds for
n satisfying n > 2¥c/e, where ¢ is an arbitrarily small number. In
the latter case, we have

a™ 2k
<<k,
n! n
which means that
n
lm 2z, = lim — =0. &

2.3 Infinite Series of Real Numbers

2.3.1 Limits of Infinite Series

This section focuses on convergence properties of infinite series. The im-
portance of this issue will become apparent, particularly in connection with



30 2 Real Sequences and Series

certain branches of functional analysis such as Hilbert space theory and or-
thogonal polynomial expansions, where infinite series of numbers (or of func-
tions) enter quite often (see Chaps. 4 and 5).

To begin with, we briefly review the basic properties of infinite series of real

numbers. Assume an infinite sequence (aj,asg, - ,ay,---) of real numbers.
We can then form another infinite sequence (A1, Ag, -+, A,,--+) with the
definition

n
An = Z Qg .
k=1

Here, A, is called the nth partial sum of the sequence (a,), and the
corresponding infinite sequence (A,,) is called the sequence of partial sums
of (ay). The infinite sequence (4,,) may or may not be convergent, which de-
pends on the features of (ay).

Let us introduce an infinite series defined by

Zak:a1+a2+~~. (2.9)
k=1

The infinite series (2.9) is said to converge if and only if the sequence (A,,)
converges to the limit denoted by A. In other words, the series (2.9) converges
if and only if the sequence of the remainder R, ., = A — A, converges to
zero. When (A4,,) is convergent, its limit A is called the sum of the infinite
series of (2.9), and we may write

o0 n

g ar = lim E ar = lim A, = A.
n—oo n—oo

k=1 k=1

Otherwise, the series (2.9) is said to diverge.
The limit of the sequence (4,) is formally defined in line with Cauchy’s
procedure as shown below.

& Limit of a sequence of partial sums:
The sequence of partial sums (4,) has a limit A if for any small € > 0,
there exists a number NV such that

n>N = |4,-A|<e. (2.10)

1

E les 1. The infinit i - - —
ramples e infinite series l; (k 1

> converges to 1 because

" /1 1 1
A, = ) =1- 1 .
;<k k+1> nr1 L (o)
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oo
2. The series Z(—l)k diverges because the sequence
k=1

_ . vk J O n(iseven),
An = ;( )" = { —1 n (is odd)
does not approache any limit.

3. The series Zl =14+14+1+--- diverges since the sequence A, =
k=1

n
g 1 = n increases without limit as n — oo.
k=1

2.3.2 Cauchy Criterion for Infinite Series

The following is a direct application of the Cauchy criterion to the sequence
(Ay), which consists of the partial sum A,, = >, _; ax:

& Cauchy criterion for infinite series:
The sequence of partial sums (A4,,) converges if and only if for any small
€ > 0 there exists a number N such that

n,m>N = |A4,—A,|<e. (2.11)

Similarly to the case of real sequences, the Cauchy criterion alluded to above
provides a necessary and sufficient condition for convergence of the sequence
(A,). Moreover, from the definition, it also gives a necessary and sufficient
condition for convergence of an infinite series Y.~ a;. Below is an important
theorem associated with the latter statement.

& Theorem:
If an infinite series ) ;- | ax is convergent, then
lim a, = 0.
n—oo

Proof From hypothesis, we have

Hence,
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According to the theorem above, lima, = 0 is a necessary condition for
the convergence of A,. However, it is not a sufficient condition, as shown in
the following example.

Ezamples Let ap = 1/v/k. Although limy_,o ax = 0, the corresponding infi-
nite series Y ay diverges, as seen from

" 1 1
ar =1+ —+---+ —
2=t Vi

- 1 n 1 n +1 n Jn
_ _ = —= = /N — OQ.
= mt N n

Remark. The contraposition of the previous theorem serves as a divergent
test of the infinite series in question; we can say that

o0
lim a, #0 = Z ay is divergent.

2.3.3 Absolute and Conditional Convergence

Assume an infinite series -
> a, (2.12)
k=1

and an associated auxiliary series

> laxl, (2.13)
k=1

in the latter of which all terms are positive. If the series (2.13) converges,
then the series (2.12) is said to converge absolutely. The necessary and
sufficient condition for absolute convergence of (2.12) is obtained by replacing
A, in (2.11) by

By, = a1| + |az| + -+ - + |an].
If the series (2.13) diverges and the original series (2.12) converges, we say that

the series (2.12) converges conditionally. These results are summarized by
the statement below.
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& Absolute convergence:
The infinite series Y ay is absolutely convergent if > |a| is convergent.

& Conditional convergence:
The infinite series > ay, is conditionally convergent if > aj is convergent
and Y |ag| is divergent.

Ezxamples The infinite series

0 Nkl
;(1]2 (2.14)

converges conditionally, since it converges while its absolute-value series
Sae [(=D)F K| = 277 (1/k) diverges. See Exercises 1 and 2 in this
section.

The following is an important theorem that we use many times in the
remainder of this book.

& Theorem:
An infinite series converges if it converges absolutely.

Proof Suppose that the series (B,,) consisting of

n

B, = Z|ak|

k=1
converges as n — 0o. This means that for any € > 0 a number N exists such
that
n,m>N = |B,— B,|<e¢. (2.15)

Assuming n > m, we rewrite the left-hand inequality in (2.15) as
‘Bn - Bm| = ‘am-i—l‘ + |am+2| 4+ |an|
Z \am_ﬂ +Clm+2 + -+ U,n|
= A, — Anl, (2.16)
where we used the law of inequalities for sums. Hence, it follows from (2.15)

and (2.16) that
n,m>N = |4, —A.| <e,

which means that the series Y aj converges. &



34 2 Real Sequences and Series

The converse of the above theorem is not true. Below we present a well-
known example of a convergent series that is not absolutely convergent.

2.3.4 Rearrangements

Observe that the conditionally convergent series (2.14) expressed by

11 1 1
1_§+§_Z+g_...’ (2.17)
may be rearranged in a number of ways, such as
1 1 1 1
1+§7§+371+... (2.18)
o 111 1
_§_§+?+1+§_... (2.19)

or in any other way in which the terms 1,-1/2,1/3,—1/4,--- are added in a
certain order. Series such as (2.18) and (2.19) are called rearrangements of
the series (2.17).

Of importance is the fact that rearranging procedures may change the
convergence property of a conditionally convergent series; in what way this
happens depends on the nature of the original series, as we shall now see.
Suppose a series Y a, to be conditionally convergent. Then, the sum of its
positive terms or that of its negative term goes, respectively to 400 or —oo;
otherwise the original series would diverge or converge absolutely. Let (by,)
and (c,) be, respectively, the subsequences of positive and negative terms of
(an). Since >_;_, by, is monotonically increasing with respect to n, there is a
positive integer m; such that

mi
Zbk Z 1-— Ci.
k=1

Here the right-hand side is positive since ¢; is negative. We rewrite it as

mi
Zbk +a >1.
k=1

Similarly, there is an integer my > my such that

mo
Zbk +c2 > 1.
k=1

Continue on the same process for ms, my,--- ,m, and take the sum of each

side to obtain . N
S b+ Y =n (2.20)
k=1 k=1
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Note that the left-hand side is a partial sum of the rearrangement of the
sequence (ay) that may, for instance, take the form of

(b17b27 e 7bm17617bm1+17bm1+27 e 7bmz7027 e ) . (221)

Clearly, the left-hand side of (2.20) diverges as n — oo, which means that
the rearrangement (2.21) diverges. Therefore, the conditionally convergent
series may become divergent through the rearranging procedure. In fact, the
discussion above serves as part of the proof of the theorem below.

#® Riemann theorem: -
Given any conditionally convergent series and any r € R = RN oo, there
is a rearrangement of the series that converges to 7.

Proof The case of r = oo was proved in the previous discussion. Now let
r € R and assume that (b,) and (c,) is the subsequence of positive and
negative terms, respectively, in the same order in which they appear in (a,,).
It is possible to obtain the smallest sum such that

my
S1 = Z bk
k=1
exceeds r. Then, add the least number of negative terms ¢, to obtain the

largest sum. Such that
mi ni
S S o
k=1 k=1

is less than r. Proceeding in this fashion, we obtain a sequence si, $2, 83, -
that converges to r, since

lim b, = lim ¢, = 0.

n—oo n—oo

This result is the case for an arbitrary real number r. Hence, the proof is
complete. &

Exercises

1. Determine the convergent property of the series
o0
k=1

This is known as a harmonic series.

(2.22)

&=
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Solution: Let A, =), _,(1/k). We then have

RS S SRS BN RS
A = T T m = om T

which implies that the sequence (A,) is not a Cauchy sequence.

Thus, view of the Cauchy criterion, the harmonic series (2.22)
diverges. &

Determine the convergence of the series

1
> = (2.23)
k=1

This is called a hyperharmonic series (or zeta function) and is de-
noted by £(p).

Solution: When p < 1, a partial sum Agn consisting of the first
2" terms reads

o — (14 1 11 1 1
2n = +27 + 374'@ + 57"""87 +

et ]
[T 2y

+
Slie ) e (2o D) (2 v )y
= 2 374 5 8
1

—_

[ S
T 2n

1 1 1 n
>4 - Xx24 - x4d4F—x2" =,
ZotgratgrAt g 2

This means that the series (2.23) diverges for p < 1.
For p > 1, we have

4 (A 1 1
on+1_1 = —+ 54—3—1) —+ 4—p++77 4.

*[@iw“*mﬂl—m]

1 1 1 n
<1+2—px2+47x4+~--+wx2

n k — —
1 1—(1/2v—Yyntl  gp—l
- 192: <2p_1> - <
=0

1—(1/2p1) 2r=1 1"

Hence, the monotonically increasing sequence {4, } is bounded
above and is thus convergent. o
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3. Determine the convergence of the series

© Nkl
kz_:l(lli (2.24)

Solution: Let n be an even integer, say n = 2m. Then, it follows

that
2m
(—1)F+1 1 11 1 1
2};/& o) P \3 1) T e =1 T am
1 1
2.1 4-3 2m(2m — 1)’

11 11 1
A’rnzl_ 5 o —\4g T =) T 5~ 1’
? (2 3) (4 5) om

which indicates that (Asa,,) is bounded above. Hence, (Aa;,) con-
verges to a limit A. Further more, since Agp, 11 = Aoy +1/(2m+1),
the same discussion as above tells us that the sequence (Ag;41)
also converges to the common limit A. By applying the result
from shuffled sequences (see Exercise 3 in Sect. 2.1.2), we find
that lim A,, exists, so the series (2.24) converges. It is thus proven
that the series converges conditionally. &

4. Suppose that the infinite series ), a; and ), by are both convergent
absolutely. Let (a;b;) be an infinite sequence in which the terms a;b; are
arranged in an arbitrary order, say, as

(agb1,a1bs, asba, asby,--+).

Show that the sequence of the partial sums of (a;b;) converges absolutely
regardless of the order of the terms a;b;.

Solution: Let m and n be the maximum values of ¢ and j, re-
spectively, that are involved in the partial sum Z(z) 9 a;bj; here
(i,7) denotes the possible combinations of i and j that are ar-
ranged in the same order as in thesequence (a;b;). The partial
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sum is a portion of the product of the finite sums given by
(> ai) (Z?Zl bj). Hence, we have

Zaibj = Z |aibj| = Zai

(4,) (4,9)

IR
P i=1 j=1

2.25
From hypothesis, the left-hand side in (2.25) converges as m(, n —)>
oo. This means that the partial sum 3, - |a;b;| is bounded above.
In addition, it is obviously increasing. Therefore, }-; . a;b;| con-
verges (i.e., Z(i, i) a;b; converges absolutely) independently of the
order of ¢ and j in the sequence of (a;b;). &

5. Show that rearrangements of absolutely convergent series always converge
absolutely to the same limit.

Solution:  Let ) ;- ai be absolutely convergent and assume
that Y, by is its rearrangement. Define A, = > ,_, |ax|, A =
limy, oo Ay, By = Y1y |bi|, and let € > 0. By hypothesis, there
is an integer N such that |A — Ax| = |an41| + lan42| + - < 5.
Now we choose the integer M so that all the terms aq,a9,--- ,an
appear in the first M terms of the rearranged series, i.e., within
the finite sequence (b1, be, - -+ ,bar). Hence, these terms do not con-
tribute to the difference B,, — Ay, where m > N. Consequently,
we obtain

€
mZN:>|Bm*AN|§|aN+1|+|a1v+2|+~~<§

:>|A—Bm‘§|A—AN|+|AN—Bm‘<E,

which shows that lim,,_,oc B, = A. &

2.4 Convergence Tests for Infinite Real Series

2.4.1 Limit Tests

This section covers the important tests for convergence of infinite series. In
general, these tests provide sufficient, not necessary, conditions for conver-
gence. This is in contrast to the Cauchy criterion, which provides a neces-
sary and sufficient condition for convergence, though it is difficult to apply in
practice. The first test to be shown is called the limit test, by which we can
examine the absolute convergence of infinite series quite easily.
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& Limit test for convergence:
If
lim kPa; exists for some p > 1,
k—o0

then Y7 | ax converges absolutely (and thus converges ordinary).

Proof By hypothesis, we set limy_. o, kPay, = A for certain p > 1, which implies
that
lim kP|ag| = |Al.
k—oo
Hence, there exists an integer m such that
E>m = kPlag| —|A| <1,
or equivalently,
Al +1
kp
We know that the series > 2~ 1/kP converges for any p > 1 (see Exercise

2 in Sect. 2.3). Thus it follows from (2.26) that the series > p-  |aj| also
converges, from which the desired conclusion follows at once. &

k>m = |ag| <

(2.26)

There is a counterpart of the limit test for convergence that determines
divergence properties of series as follows.

& Limit test for divergence:
If
klim kay # 0,

then > -, ax diverges. The test fails if the limit equals zero.

Proof Suppose lim kay = A > 0. Then there exists an integer m such that

A
k>m = kak>§.

Hence, by employing the result from harmonic series (see Exercise 1 in
Sect. 2.3), we obtain

i ap > i % = 00,
k=m k=m

from which the desired result follows. The same procedure can be applied to
the case of A < 0, in which case the series Y 7~ | (—ay) may be treated by the
procedure above. The proof is thus complete. &
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Remark.

1. The test is valid even when A goes to infinity.

2. The divergence test described above is inconclusive when lim ka; = 0. To
see why, consider the two series

= 1 =~ 1
Zﬁ and kgfflogk"

k=1

The former converges and the latter diverges, but both yield lim kay = 0.

2.4.2 Ratio Tests

The following provides another test for absolute convergence of infinite series
that is sometimes easier to use than the previous one.

& Ratio test:
A series >y, a) converges absolutely (and thus converges ordinary) if

lim sup azy P (2.27)
k— oo Qg
and diverges if
limsup | 2541 > 1. (2.28)
k— oo ag

If the limit superior is 1, the test is inconclusive.

Remark. When |ap4+1/ax| converges, the limits superior used in (2.27) and
(2.28) reduce to the ordinary limits.

Proof (i) Suppose that ¢ = limsup L

< 1. Then, for any r € (¢,1), we

k—o00 ag
can find the number m such that
a
k>m = |t <y
ag
a a a , .
It follows that |——t! mt2 X |—2EP | <P op equivalently,
am Am+1 Am+4p+1

|@mtp| < rPlam|, which holds for any p € N. Hence, we have
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o0 o0 oo r
Z|am+p‘: Z || <Z7ﬂp‘am‘:ﬁ|am|~
p=1 k=m+1 p=1

The last term is a finite constant. Therefore, the series Y7 . |ax| re-
mains finite and the series Y -, aj converges absolutely.

(ii) Next we assume that

a
lim sup RLERY ST
k—o0 ag
Then there is an integer m such that
ar
k>m = |—tlsq
ag

That is,
E>m = Jag| > |an| >0,

which means that
klirn ap # 0.

In view of the remark in Sect. 2.3.2, the series Y ;- ; ai diverges. &

2.4.3 Root Tests

We now give an alternative absolute-convergence test based on examining the
kth root of |ag|.

& Root test:
A series Y 77 aj converges absolutely (and ordinary) if

limsup V/]ax| <1

k—oo
and diverges if

limsup +/|ax| > 1.

k— oo

If the limit superior is 1, the test fails and does not provide any information.

Proof Let r = limsup W . We first prove that the series converges abso-
k—o0

lutely if r < 1. We choose a positive number ¢ € (r,1). Then there is a positive
integer N such that

k>N = Val<c = l|ap] <
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Since the geometric series Y ¥ with ¢ < 1 converges, > |ax| converges, so
that > aj converges absolutely.

When r > 1, it follows from the definition of the limit superior (see
Sect. 2.1.4) that there are an infinite number of terms of {/|ay| greater than
1. This implies that limay # 0, which means that the infinite series Y aj
diverges. o

Examples Assume the series

e 1 1 1 1 1
Zak:17§+4727§+4747$+“.' (2.29)
k=0
Since
0/ 1 1 2 1 3 1 a 1
|(10|:15 \/m:§7 \/@:Za \/@:? ‘a4‘:Z7”.7
we have

1
limsup &ar, = 5 < 1.

k—o0

Thus the series (2.29) converges (absolutely and ordinary).

2.4.4 Alternating Series Test

All the convergence tests presented so far are tests for absolute convergence,
which assumes ordinary convergence. Nonetheless, certain kinds of series can
exhibit conditional convergence, i.e., ordinary convergence with absolute di-
vergence, whose convergence properties cannot be addressed by the tests given
thus far. Hence, the significance of the test described below, known as the
alternating series test, is that it may be used to test the conditional con-
vergence of some absolutely divergent series.

We say that (z1) is an alternating sequence if the sign of x, is different
from that of 4 for every k. The resulting series > xy is called the alter-
nating series, whose convergence properties are partly determined by the
following theorem:

& Alternating series test:
An alternating series given by

(o]
ay —as+az3—ag+--- = Z(—l)k+1ak with ar > 0 for all k&
k=1

converges if

ap > ag+1 and  lim ap = 0.
k—oo



2.4 Convergence Tests for Infinite Real Series 43

Proof First we show that the sequence of partial sums .S,, converges. It follows
that

Asy = (a1 —ao) + (a3 —aq) + -+ + (agpn_1 + aop)-
Since ay —ag4+1 > 0 for all k, the sequence A, is increasing. It is also bounded
above because

Aoy = a1 — (a2 —a3) — (as —as) — -+ — (agn—2 + a2n—1) — a2, < a1 (2.30)

for all n € N. Thus, lim A,,, exists and we call it A. On the other hand, we
have

|Agni1 — Al = [Aonaznyr — Al < Az — Al + |aznia]-
In the limit as n — o0, the left-hand side vanishes so that we obtain
lim Ay, 41 = A. Therefore, we conclude that S, — S &

Exercises

o0 1/2
1. Show that Z( (k+1)
k=1

m converges.

Solution: Taking p =7/6 > 1 into the limit test for convergence,

we have
—1y1/2
CT/6 s (I+k) _
N Y T
= i log k
2. Show that Z(—l) 12 converges.
k=1

Solution: With use of the limit test for convergence by taking
p = 3/2, we obtain

0. &

lim £%/2a; = lim (—1)k10gk =

k—o0 k—o0 \/E

. klogk
3.  Show that ;; TR

diverges.

Solution: From the limit test for divergence, we have

. . k%logk
i ka = lim === =

&
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converges.

4. Sho thati (k!)Q
’ W L ()

Solution: The ratio test yields
(2k)! [(k + 1)1 (k+1)?

Ak+1|
(kD2 (2k+2)!  (2k+2)(2k+1)

ag

(14 1)2 1
Eﬁ?ﬁjgﬁz<1@ﬁm)a

oo — K2
1
5. Show that E 1+ — converges.
k=1 < k> ©

Solution: The root test yields

1Y 1 1
(%) ] Thram e
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Real Functions

Abstract Infinite sequences and series of real functions are encountered frequently
in mathematical physics. The convergence of such sequences and series does not
generally preserve the nature of their constituents; e.g., a sequence of “continuous”
functions can converge into a “discontinuous” function. In this chapter, we show
that this is not true in cases of uniform convergence (Sect. 3.2.2), which is a special
class of convergence that preserves the continuity, integrability, and differentiability
of the constituent functions of sequences and series, as we explain in detail in Sects.
3.2.4-3.2.6.

3.1 Fundamental Properties

3.1.1 Limit of a Function

Having discussed the limits of sequences and series of real numbers, we now
turn our attention to the limit of functions. Let A be a real number and f(z)
a real-valued function of a real variable z € R. A formal notation of the above
function is given by the mapping relation f : R — R. The statement “the
limit of f(x) at x = a is A” means that the value of f(x) can be set as close
to A as desired by setting x sufficiently close to a. This is stated formally by
the following definition.

#® The limit of a function:
A function f(z) is said to have the limit A as x — a if and only if for
every € > 0, there exists a number d > 0 such that

[z —al <d = |f(z)— A <e. (3.1)

The limit of f(z) is written symbolically as
lim f(z)=A

r—a
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or
f(x) = A for z — a.

If the first inequality in (3.1) is replaced by 0 < z —a < ¢ (or 0 < a — z < 9),
we say that f(z) approaches A as x — a from above (or below) and write

lim f(z)=A4 (or lim f(x)= A) .
r—a+ T—a—
This is called the right-hand (or left-hand) limit of f(z). The two together
are known as one-sided limits.
A necessary and sufficient condition for the existence of lim, ., f(x) is
shown below.

& Theorem:
The limit of f(z) at = a exists if and only if
lim+f(:c) = lim f(=). (3.2)

Proof Tf lim,_,, f(z) exists and is equal to A, it readily follows that

lim f(z)= lim f(x)=A. (3.3)

r—a+ T—a—

We now consider the converse. Assume that (3.2) holds. This obviously means
that both one-sided limits exist at x = a. Hence, given € > 0, we have §; > 0
and ds > 0 such that

O<z—a<d = |f(x)—Al <e,
O<a—xz<d = |flx)—A]<e.

Let § = min{dy, d2}. If = satisfies 0 < |z — a| < §, then either
O<xz—a<d<d or 0<a—z<d <.

In either case, we have |f(z) — A| < e. That is, we have seen that for a given
g, there exists d such that

O0<l|z—al<d = |[f(z)—Al<e.
Therefore we conclude that

Equation (3.2) holds = lim f(z) = A,

r—a

and the proof is complete. &
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3.1.2 Continuity of a Function

In general, the value of lim,_., f(x) has nothing to do with the value (and
the existence) of f(a). For instance, the function given by

_ .2
f(x){2 295 x#1,

r=1

gives

lim f(z) =0 and f(1) =2,

which are quantitatively different from one another. This mismatch occurring
at = 1 results in a lack of geographical continuity in the curve of y = f(x),
as depicted in Fig. 3.1. In mathematical language, continuity of the curve of
y = f(x) is accounted for by the following statement.

Fig. 3.1. A discontinuous function y = f(z) at x =1

& Continuous functions:
The function f(z) is said to be continuous at = = «a if and only if for
every € > 0, there exists 6 > 0 such that

|z —a| <0 = |f(z) — fla)| <e.

Remark. The definition noted above seems to be similar to the definition of the
limit of f(x) at © = a (see Sect. 3.1.1). However, there is a crucial difference
between them. When considering the limit of f(z) at © = a, we are only
interested in the behavior of f(x) in the vicinity of the point a, not just at a.
However, the continuity of f(x) at = a requires the further condition that
the value of f(z) just at x = a has to be defined. In symbols, we write

f(z) is continuous at r =a = lim f(z)= lim f(z)= f(a).

rz—a—0 r—a+0
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We must emphasize that given a function f(z) on a domain D, the limit of
f(z) is defined at limit points in D that may or may not lie in D. In contrast,
the continuity of f(x) is defined only at points contained in D. An illustrative
example is given below.

Ezxamples Assume a function given by
f(z) =z for all but = 1.

It has a limit at z = 1,
lim f(z) =1,

r— 00

but there is no way to examine its continuity because x = 1 is out of the
defining domain.

When f(x) is continuous, we can say that f(z) belongs to the class of functions
designated by the symbol C. Then, it follows that
flzyeCatz=a <= lim f(z)= f(a).
r—a

If the symbol x — a appearing in the right-hand statement is replaced by
x — a+ (or x — a—), f(x) is said to be continuous on the right (or left)

at x = a. We encounter the latter kind of a limit particularly when we consider
the continuity of a function defined within a finite interval [a, b]; we say that

f(z) € Con la,b <~
f(x)eCon (a,b) and lim f(z)= f(a), lm f(z)= f(b).

r—a+ r—b—
We also say that a function f(x) on [a,b] is piecewise continuous if

(i) f(=x) is continuous on [a, b] except at a finite number of points 1, xa, -+ ,
LTps

(ii) at each of the points 1,9, - ,Z,, there exist both the left-hand and
right-hand limits of f(x) defined by

flap =0) = lim f(z), flzx+0)=_lim f(z).

3.1.3 Derivative of a Function

The following is a rigorous definition of the derivative of a real function.

# Derivative of a function:
If the limit
o 1) = (@)

r—a Tr—a

exists, it is called the derivative of f(x) at = a and is denoted by f’(a).
The function f(z) is said to be differentiable at x = a if f/(a) exists.
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Similar to the case of one-sided limits, it is possible to define one-sided
derivatives of real functions such as

flat) = tim TEZ1@,
f’(a—) _ TEIE_ f(xi : i(a)

& Theorem:
If f(z) is differentiable at = a, then it is continuous at = a. (The
converse is not true.)

Proof Assume x # a. Then
f(z) = f(a)

r—a

f(x) = fla) = (z —a).

From hypothesis, each function [f(z) — f(a)]/(z — a) as well as 2 — a has the
limit at x = a. Hence, we obtain

tim [7(2) ~ f(a)] = lim 22T g (00— (@) <0 =0,
Therefore,

lim f(z) = f(a),

r—a
ie., f(x) is continuous at * = a. That the converse is false can be seen by
considering f(x) = |z|; it is continuous at x = 0 but not differentiable. &

The term C™ functions is used to indicate that all the derivatives on the order
of <n exist; this is denoted by

flryec” = fM@)ecC.
Such an f(z) is said to be a C™ function or to be of class C™.

Ezamples 1. f(x) = {2’ i i 8

= f(x)€C'=0), but f(z)ZCt at x=0.

0 =<0
2. /0 ={p 550

= f(z)eCl, but f(z)¢C? at 2=0.
3. Taylor series expansion for functions f € C"™ is given by

1 af
o) =251 ur
k<n

(xz— azo)k +o(|lz — zo|™).

T=T0
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3.1.4 Smooth Functions

We now introduce a new class of functions for which the derivative is contin-
uous over the defining domain.

#® Smooth functions:
The function f(z) is said to be smooth for any x € [a,b] if f/(z) exists
and is continuous on [a, b].

In geometrical language, the above statement means that the direction of the
tangent changes continuously, without jumps, as it moves along the curve
y = f(x) (see Fig. 3.2). Thus, the graph of a smooth function is a smooth
curve without any point at which the curve has two distinct tangents.

Similar to the case of piecewise continuity, the function f(z) is said to
be piecewise smooth on the interval [a,b] if f(x) and its derivatives are
all piecewise continuous on [a,b]. The graph of a piecewise smooth function
is either a continuous or a discontinuous curve; furthermore, it can have a
finite number of points (called corners) at which the derivatives show jumps
(see Fig. 3.2). Every piecewise smooth function f(z) is bounded and has
a bounded derivative everywhere, except at its corners and points of dis-
continuity; f’(z) does not exist in the sense of continuity at any of these
points.

(a) (b)

Fig. 3.2. (a) A continuous function y = f(z). (b) A piecewise smooth function
y = f(x) having two discontinuous points and one corner

3.2 Sequences of Real Functions

3.2.1 Pointwise Convergence

In this section we focus on convergence properties of sequences consisting of
real-valued functions of a real variable. Suppose that for each n € IN, we have
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a function f,(z) defined on a domain D C R. We then say that we have a
sequence

(fu(z): n€ N)

of real-valued functions on D. If the sequence (f,(x)) converges for every
x € D, the sequence of functions is said to converge pointwise on D, and
the function defined by

f(z) = lim f,(x)
n—oo
is called the pointwise limit of (f,,(x)). The formal definition is given below.
& Pointwise convergence:
The sequence of functions (f,,) is said to converge pointwise to f on

D if, given € > 0, there is a natural number N = N(e,z) (which depends
on ¢ and z) such that

n>N = |fulz)—f(z)| <e.

30

0 X <1D

Fig. 3.3. Converging behavior of f,(xz) = 2™ given in (3.4)

Ezamples Assume a sequence (f,,) consisting of the function
fn(z) = 2" (3.4)

that is defined on a closed interval [0, 1]. It follows that the sequence converges
pointwise to
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f(x) = lim f,(z) = (3.5)

Ofor0 <o <1,
latz=1.

See Fig. 3.3 for the converging behavior of f,(x) with increasing n.

The important point is the fact that under pointwise convergence, conti-
nuity of functions of f,(x) is not preserved. In fact, f,(z) given in (3.4) is
continuous for each n over the whole interval [0,1], whereas the limit f(x)
given in (3.5) is discontinuous at = 1. This indicates that interchanging
the order of the limiting processes under pointwise convergence may produce
different results, as expressed by

lim lim f,(z) # lim lim f,(x).

r—1n—oo n—oo x—1
Similar phenomena might occur in connection with, integrability and differ-
entiability of terms of functions f,(x). That is, under pointwise convergence,
the limit of a sequence of integrable or differentiable functions may not be
integrable or differentiable, respectively. Illustrative examples are given in
Exercises 1 and 2 in Sect. 3.2.

3.2.2 Uniform Convergence

We know that if the sequence (f,(z)) is pointwise convergent to f(x) on
x € D, it is possible to choose N(z) for any small € such that

m> N(z) = |fm(x)— flz)] <e. (3.6)

In general, the least value of N (x) that satisfies (3.6) will depend on z. But in
certain cases, we can choose N independent of x such that |f,,(z) — f(z)| < e
for all m > N and for all x over the domain D. If this is true for any small
g, the sequence (f,(x)) is said to converge uniformly to f(x) on D. The
formal definition is given below.

& Uniform convergence:

The sequence (f,,) of real functions on D C R converges uniformly
to a function f on D if, given £ > 0, there is a positive integer N = N (e)
(which depends on ¢) such that

n>N = |fu(z)— f(z)] <e forall z € D.

Emphasis is placed on the fact that the integer N = N(e,z) in the point-
wise convergence depends on x in general, whereas N = N(¢) in the uniform
convergence is independent of x. Under uniform convergence, therefore, by
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taking n large enough we can always force the graph of y = f,,(x) into a band
of width less than 2e centered around the graph of y = f(z) over the whole
domain D (see Fig. 3.4).

y

\_f”ﬁ)/ f(x)+e

vl%@« )

I*_/ f(x)—e
0 X

Fig. 3.4. A function y = f,(x) contained overall within a band of width less than
2e

The definition of uniform convergence noted above is equivalent to the
following statement.

& Theorem:
The sequence (f,,) of real functions on D C R converges uniformly to f
on D if and only if

sup | fn(z) — f(z)| =0 as n — oo.
xeD

3.2.3 Cauchy Criterion for Series of Functions
As in the case of real sequences, the Cauchy criterion is available for testing

uniform convergence for sequences of functions.

& Cauchy criterion for uniform convergence:
The sequence of f,, defined on D C R converges uniformly to f on D if
and only if, given € > 0, there is a positive integer N = N (¢) such that

m,n>N = |fn(z)— fu(z)| <e forall z € D, (3.7)
or equivalently,

m,n >N = Sup|fm(x)_fn(x)|<5'
zeD



54 3 Real Functions

Proof Suppose that f,(z) converges uniformly to f(z) on D. Let € > 0 and
choose N € N such that

n>N = \fn(:c)—f(x)|<g for all x € D.

If m,n > N, we have

[fu(@) = [ (@) < [ful2) = f(2)| + [f(2) = fulz)| <€ forallz e D.

This result implies that if f,,(z) is uniformly convergent to f(z) on D, there
exists an N that satisfies (3.7) for any small .

Next we consider the converse. Suppose that (f,) satisfies the criterion
given by (3.7). Then, for each point of x € D, (f,,(x)) forms a Cauchy sequence
and thus converges pointwise to

f(x) = lim f,(z) for all z € D.

We now show that this convergence is uniform. Let n > N be fixed and take
the limit m — oo in (3.7) to obtain

n>N = |fu(z)— f(z)] <e forall x € D,

where N is independent of x, from which we conclude that the convergence
of (fn) to f is uniform. &

3.2.4 Continuity of the Limit Function

The most important feature of uniform convergence is that it overcomes some
of the shortcomings of pointwise convergence demonstrated in Sect. 3.2.1; i.e.,
pointwise convergence does not preserve continuity, integrability, and differen-
tiability of terms of the functions f,(z). We now examine the situation under
uniform convergence, starting with the continuity of f,, ().

& Theorem:
If f,, converges uniformly to f on D C R, then, if f,, is continuous at
ceD,sois f.

Remark. Note that the uniform convergence of f,, on D is a sufficient, but not
a necessary, condition for f to be continuous. In fact, if f,, is not uniformly
convergent on D, then its limit f may or may not be continuous at ¢ € D.

For the proof, it suffices to see that

lim f(z) = lim lim f,(z)= lim lim f,(x) = ”11_{20 fule) = fle), (3.8)

r—c Tr—Cn—0oo n—oo r—c
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which guarantees the continuity of the limit function f(x) at 2 = ¢. In (3.8),
we have used the interchangeability of limiting processes expressed by

lim lim f,(z) = lim lim f,(x),

r—Ccn—0o0o n—oo r—=cC

which follows from the lemma below.

& Lemma:
Let ¢ be a limit point of D C R and assume that f,, converges uniformly
to f on D\{c}. If
lim f,(x) =4, (3.9

xr—c

exists for each n, then
(i) (4,) is convergent, and
(ii) lim,_. f(z) exists and coincides with lim,, o, £p; i.€.,

lim lim f,(z) = lim lim f,(z). (3.10)

n—oo r—cC r—Ccn—oo

Proof Let € > 0. Since (f,) converges uniformly on D\{c}, it satisfies the
Cauchy criterion; i.e., there is a positive integer N such that

m,n >N = |fo(x)— fm(x)] <e forall z € D\{c}. (3.11)
Take the limit # — ¢ in (3.11) to obtain
mn>N = |[l,—Lly,| <e. (3.12)

This implies that (¢,,) is a Cauchy sequence and thus convergent, which proves
statement (i) above.

To prove (ii), let
(= lim /,.

n—oo

Set n = N and m — oo in (3.9), (3.11), and (3.12) to set the following results:

lim J () = L. (3.3
|fn(z) — f(x)] < e for all x € D\{c}, (3.14)

and
[l — 4] < e. (3.15)

In addition, the existence of (3.13) implies that there exists a 6 > 0 such that

|z —c| <0 withz € D\{c} = |fn(z)—IN]<e. (3.16)
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Using (3.14), (3.15) and (3.16), we obtain
|z —¢| <6 with x € D\{c}
= |f(@) =l < |f(z) = fn(@)| + [fn(2) = In]+ [In = 1] < 3e.

This means that
lim f(x) =¢,

r—cC

which is equivalent to the desired result of (3.10). &

Remark. The contraposition of the theorem tells us that if the limit function
f is discontinuous, the convergence of f, is not uniform. The example in
Sect. 3.2.1 demonstrated such a sequence.

3.2.5 Integrability of the Limit Function

We know that the limit function f(x) becomes continuous if the sequence
(fn(z)) of continuous functions is uniformly convergent. This immediately
results in the following theorem.

& Theorem:
Suppose f, be integrable on [a,b] for each n. Then, if f, converges
uniformly to f on [a,b], the limit function f is also integrable, so that

b b
/f(:c)da:: lim fn(z)dz, (3.17)

n—oo

or equivalently,

b b
/ lim fn(z)dz = lim [ fn(z)dz.

n— oo

Proof Since f,, for every n is integrable on [a,b], it is continuous (piecewise,
at least) on [a,b]. Thus f(z) is also continuous (piecewise at least) on [a,b] in
view of the theorem given in Sect. 3.2.4, so that f(x) is integrable on [a, b].
Furthermore, we observe that

/ab fr(x)dz — /ab f(z)dx

b
< / @) — f(2)] da
b

< / sup |fu(2) — f(z)|de

z€Ja,b]

< (b—a) sup |fulz) = f(2)].

z€la,b]
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The uniform convergence of (f,,) ensures that

sup |fn(x) — f(z)| — 0 as n — oo,
z€la,b]

which immediately gives the desired result shown in (3.17). &

Remark.

1. Note again that uniform convergence is a sufficient but not a necessary
condition for (3.17) to be valid, so (3.17) may be valid even in the absence
of uniform convergence. For instance, the convergence of (f,,) with f,,(z) =
2™ on [0, 1] is not uniform but we have

/01 Fol@)de = /01 Py = n%l 0= /01 F(@)da.

2. The conditions on f,, stated in the theorem will be significantly relaxed
when we take up the Lebesgue integral in Chap. 6.

3.2.6 Differentiability of the Limit Function

After the last two subsections, readers may expect that results for differentia-
bility will be similar to those for continuity and integrability; i.e., they may be
tempted to conclude that the differentiability of terms of functions f,, (z) will
be preserved if (f,) converges uniformly to f. However, this is not the case.
In fact, even if f, converges uniformly to f on [a,b] and f, is differentiable
at ¢ € [a, b], it may occur that

lim f(c) # f'(c)-

n—oo

Consider the following example:
Ezamples Suppose the sequence (f,) is defined by
1
fo(x) =4 /22 + 3 TE [—1,1]. (3.18)
Clearly (3.18) is differentiable for each n, and the sequence (f,) converges
uniformly on [—1,1] to

f(z) = |x] (3.19)

since
|fu(2) = f(@)] = y[22 + — — Va?

— 0

, forall z € [-1,1].
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However, the limit function f of (3.19) is not differentiable at & = 0. Hence,
the desired result

lim f(z) = f'(x) (3.20)

n—oo

breaks down at z = 0.

The following theorem provides sufficient conditions for (3.20) to be sat-
isfied. The important point is that it requires the uniform convergence of the
deriatives f!, not of the functions f, themselves.

& Theorem:

Suppose (fy) to be a sequence of differentiable functions on [a, b] that
converge at a certain point zg € [a,b]. If the sequence (f},) is uniformly
convergent on [a, b], then

(i) (fn) is also uniformly convergent on [a,b] to f,
(ii) f is differentiable on [a,b], and
(iil) lm,— o fl(2) = f'(2).

Proof Let € > 0. From the convergence of (f,(zo)) and the uniform conver-
gence of (f},), we conclude that there is an N € N such that

m,n>N = |fl(x)— fl(z)] <e forall x € [a, ] (3.21)

and
m,n>N = |fu(xo) — f(z0)] < &. (3.22)

Given any two points z,t € [a, b], it follows from the mean value theorem
applied to f,, — fm, that there is a point ¢ between x and ¢ such that

fn(x) - fm(x) - [fn(t) - fm(t)] = (.’I} - t) [f'r/L(c) - fr/n(c)] :
Using (3.21), we have
m,n >N = [fu(x) = fm(2) = [fu(t) = fn@]] < elz 1. (3.23)
From (3.22) and (3.23), it follows that

[fn(@) = fm(@)] < |fo(@) = fin(2) = [fu(20) = fin(@o)][ + [fn(20) = fm(20)]
<elr—wmo|+e
<elb—a+1) =Ce, forallzc€la,b,

Which means that (f,,) converges uniformly to some limit f. Hence, statement
(i) has been proven.
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Next we consider the proofs of (ii) and (iii). For any fixed point = € [a, b],

define

fult) = PO ID) g p a)
and

oty = TOZID -y e ).

Clearly, f,, — g as n — oo; furthermore, if m,n > N, the result of (3.23) tells
us that
[fn(t) — fr(t)] < e for all t € [a,b]\{x}.

Thus in view of the Cauchy criterion, we see that f, converges uniformly to
g on [a,b]\{z}. Now we observe that

lim f,,(t) = f!(x) for alln € N. (3.24)

t—zx

Then, uniform convergence of f,, ensures taking the limit of n — oo in (3.24)
followed by interchanging the order of the limit processes, which yields

lim lim f,(¢t) = }im g(t) = lim ) = /(@) = fl(z) = lim f, ().

n—oo t—ax —x t—x t—ux n— oo

This proves that f is differentiable at x and that
flx) = lim f (). &
n—oo
Remark. That the uniform convergence of (f},) is just sufficient, not necessary,

is seen by considering the sequence

xn+1

fn(z) = z € (0,1).

n+1’

This converges uniformly to 0, and its derivative f/,(x) = ™ also converges to
0. The conclusions (i)—(iii) given in the theorem above are thus all satisfied.
But the convergence of (/) is not uniform.

Exercises
1. For the function
fal@) = na(l—a?)", e 0,1,

check that an interchange of the order of the limiting process n — oo
and integration gives different results.
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Solution: The given function is integrable for each n so that

1 1 1
2\n - —n 2\n
/Ofn(x)da: n/o x(1 —a%)"dx = m(lf:r)ﬂo
n 1
Ton+1) 2

On the other hand, the limit given by

f(x) = lim f,(z) =0 forall z €[0,1]

n—oo

yields fol f(x)dz = 0. We thus conclude that
1 1
lim Jn(x)dx # lim f,(x)dz;
0

n—oo 0 n—oo

i.e., interchanging the order of integration and limiting processes
is not in general allowed under pointwise convergence. &

2. For f,(z) given by

-1 T < —%,
fn(z) =< sin (%) f% <z < %,
1 T > %,

check the continuity of its limit f(x) = lim, . fn(z) at z = 0.

Solution: f,(z) is differentiable for any = € R for all n, and thus
is continuous at z = 0 for all n. However, its limit,

—1x<0,
fle)=<¢0 z=0,
1 >0

is not continuous at x = 0. Hence, for the sequence of functions
{fn(z)}, the order of the limiting process n — oo and the differ-
entiation with respect to x is not interchangeable. &
3. Show that the sequence of functions (f,(x)) defined by
fn(x) =nxe ™™ (3.25)

converges uniformly to f(z) =0 on = > 0.
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Solution: In view of the previous theorem, we show that
sup{fo(z): >a} =0 as n — oo,
where a > 0. To prove this, we consider the derivative
fo (z) = ne " (1 — nx). (3.26)

It follows from (3.26) that © = 1/n is the only critical point of f,.
Now we choose a positive integer N such that a > 1/N. Then, the
function f,, for each n > N has no critical point on = > a, and
is monotonically decreasing. Therefore, the maximum of f,(z) is
attained at x = a for any n > N, with the result that

sup  fo(x) = fn(a) =nae™™* =0 (n — o0).

z€[a,00)

This holds for any a > 0; hence, we conclude that f,, converges
uniformly to 0 on (0,00), i.e., on z > 0. &

Remark. Note that the range of uniform convergence of (3.25) is the open
interval (0, 00), not the closed one [0, 00). Since in the latter case we have

o fule) =1 (1) = 140

z€[0,00)

it is clear that (f,,) does not converge uniformly on [0, co).

3.3 Series of Real Functions

3.3.1 Series of Functions

We close this chapter by considering convergence properties of series of real-
valued functions. Assume a sequence (f,,) of functions defined on D C R. By
analogy with series of real numbers, we can define a series of functions by

Sp(x) = ka(a:), x €D,
k=1

which gives a sequence (S,,) = (S1, Sa2,--+).

As n increases, the sequence (S,) may or may not converge to a finite
value, depending on the feature of functions fi(x) as well as the point x
in question. If the sequence converges for each point x € D (i.e., converges
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pointwise on D), then the limit of .S, is called the sum of the infinite series
of functions fi(z) and is denoted by

oo

S(z) = lim S,(z) = ka(x), z € D.

n—oo
k=1

It is obvious that the convergence of the series S, (z) implies the pointwise
convergence lim,, . fn(z) = 0 on D. A series (S,) that does not converge at
a point z € D is said to diverge at that point.

Applied to series of functions, the Cauchy criterion for uniform convergence
takes the following form:

& Cauchy criterion for series of functions:
The series S, is uniformly convergent on D if and only if for every small
€ > 0, there is a positive integer N such that

n>m>N

< e forall zx € D.

> ful@)

k=m-+1

= |Sn(m) - Sm($)| =

Set n = m + 1 in the above criterion to obtain
n>N = |fu(z)] <e forall ze€D.

This results implies that the uniform convergence of f,(x) — 0 on D is a
necessary condition for the convergence of S,,(x) to be uniform on D. We will
use this theorem when proving a more practical test for uniform convergence
known as the Weierstrass M-test, which is presented in Sect. 3.3.3.

3.3.2 Properties of Uniformly Convergent Series of Functions

When a given series of functions Y fi(z) is uniformly convergent, the proper-
ties of the sum S(x) in terms of continuity, integrability, and differentiability
can be easily inferred from the properties of the separate terms fi(x). In fact,
applying the theorems given in Sects. 3.2.4-3.2.6 to the sequence (S,,) and
using the linearity regarding the limiting process, integration, and differenti-
ation, we obtain the parallel theorems shown below.

& Continuity of the sum:
Suppose fx(x) to be continuous for each k. If the sequence (S,,) of the
series

Sn(x) = Z fr(@)
k=1
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converges uniformly to S(z), then S(z) is also continuous, so that

o0
lim S(t) = 11mz:1fk ;glm fe(®)

& Integrability of the sum:
Suppose [, to be integrable on [a, b] for all k. If (.S,,) converges uniformly
to S on [a, b], we have

/abS(x)da: = /abki_o:lfk(x)dz = i

k=1v¢

& Differentiability of the sum:

Let fi be differentiable on [a,b] for each k and suppose that (S,) con-
verges to S at some point zg € [a,d]. If the series ) f; is uniformly con-
vergent on [a, b, then S, (z) is also uniformly convergent on [a,b] and the
sum S(z) is differentiable on [a, b], so that

%S(m) = % [i fk(x)] = i dfflix) for all z € [a, b].

k=1

Observe that the second and third theorems provide a sufficient condition for
performing term-by-term integration and differentiation, respectively, of an
infinite series of functions. Without uniform convergence, such term-by-term
calculations do not work.

3.3.3 Weierstrass M-test

The following is a very useful and simple test for the uniform convergence of
a series of functions.

& Weierstrass M test: If there is a sequence of positive constants My,
for any « on the interval [a, b] such that

| fr(z)] < My (3.27)
and if the series

i My (3.28)
k=0

converges, then the series of functions Y 7o fx(z) converges uniformly on
z € [a,b).
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Proof Since (3.28) converges, it follows from the Cauchy criterion that for any
€ > 0 there exists a number N such that

D M= My

k=0 k=0

n>m>N = :ZMk<5. (3.29)

k=m

Furthermore, in view of the inequality rule for absolute values of sums and
the relation (3.27), it follows that

n

< @) <> M (3.30)

k=m k=m

> ful)

k=m

for all © € [a,b]. Note that the left-hand term in (3.30) can be rewritten as

n

> frl@)

k=m

n

D fr@) = ful@)
k=0

k=0

. (3.31)

From (3.29), (3.30), and (3.31), it follows that

n m

> fk@) = fulx)

k=0 k=0

n>m>N = < ¢ for all z € [a,b),

which clearly indicates the uniform convergence of > fr(x) on [a,b]. &

Exercises

oo

1. Determine the convergence of the series E z".
k=0

Solution: It obviously converges to 1/(1 — z) on the interval
[—a,a] if 0 < a < 1. We show that this convergence is uniform on
[—a,a] for any 0 < a < 1. A partial sum yields S, (z) = Y} _, 2% =
(1 —2")/(1 —z), so that

S(2) = $u(e)| = [ < T

for |z| < a.

Since 0 < a < 1, the last term decreases monotonically with n;
hence, for a given ¢ > 0, we can find an N such that n > N =
a"/(1 — a) < e. Clearly the value of N does not depend on x.
Therefore, we conclude that the infinite series Y 2% is uniformly
convergent on [—a,a] with0<a <1. &



2. Determine the convergence of the series Z(l —x)z”.

3.3 Series of Real Functions

oo

k

k=0

Solution: This converges to

LforO<z<1
S(x){(),at r=1

but not uniformly. Actually, we have

M0<zr<l1
50 - 5. = {5 055

and if € = 1/4, for instance, the inequality 2™ < 1/4 (0 <z < 1)
is false for every fixed n because 2" — lasz — 1. &

o0
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3. Examine the uniform convergence of the series Z fr(z), where

k=1

(i) fr(z) = k2 (i) fr(z) =sin (%), and (iii) fi(2) = 2.

Solution:

(i)

(ii)

(iii)

The series converges uniformly for every real x. Check this
by taking Mj, = 1/k2.

Let D be a subset of R bounded by ¢, i.e., |z| < ¢ for all
z € D. Then we have

‘sin(%)‘ < % < k% for all z € D.
Taking My = c¢/k? and noting that > M, is convergent, we
conclude that Y fi is uniformly convergent on any bounded
subset of R. Notably, however, this uniform convergence dis-
appears when we extend the domain D to the whole R. This
is seen by noting that f; — 0 pointwise on R, but

2
sin(k;/2>‘ =140,

which means that the convergence of (fi) to 0 is not uniform
on R. In view of the theorem in Sect. 3.3.1, therefore, the
series Y f fails to converge uniformly on R.

sup | fr(x)] >
mGR

The series Y., 1/(k*z?) clearly converges pointwise on the
open set R\{0}. Now let ¢ > 0. For all x € R such that |z| > ¢,
we have |f(z)] < 1/(k*c?) for all k. Since Y, 1/(k*c?) is
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convergent, the series Y fi converges uniformly, by the M-
test, on the closed set R\(—c,¢) = (—o0, —c] U [¢, 00) for all
¢ > 0. But, although f; — 0 pointwise on R\{0}, we have

supz¢0|fk(x)\ > |fu(1/k)] = 1 4 0. Hence, (fx) does not
converge uniformly to 0 on R\{0}, so the series ) f; does
not converge uniformly on R\{0}. &

3.4 Improper Integrals

3.4.1 Definitions

Suppose that a given function f(x) is integrable on every open subinterval

f (a,b). We try to perform the integration fab f(z)dz under the following
conditions:

1. f(x) is unbounded in a neighborhood of = a or x = b.
2. The interval (a,b) itself is unbounded.

In Case 1, we define a definite integral,

b X
|tz = i [ paan

if f(x) is bounded and integrable on every finite interval (a, X) for a < X < b.
Similarly, if f(x) is bounded and integrable on every (X,b) for a < X < b, we

can define . .
/a f<x)dx:x£%1+o/)( f(x)dx

These definite integrals are called improper integrals. Straightforward ex-
tensions of these results to Case 2 yields the other improper integrals:

oo X
/a f(x)dx = Xlgnoo ’ f(x)dx
and

b b
/ f(z)dz = lim f(z)dx
—0o0 X—00 —-X

oo
d
FEzamples 1. The improper integral / —Z has the value 1 since
1 X

> dx . A dx
) = hrn -
1 x A—o0 1 T

4
d
2. The improper integral / o has the value 1 since

f
—*hm/— m 22VE_
e—+0 \f e—>+0 2
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3.4.2 Convergence of an Improper Integral

An improper integral over f(z) is said to converge if and only if the corre-
sponding limit exists. Furthermore, it is said to converge absolutely if and
only if the corresponding improper integral over |f(z)| converges. (Keep in
mind that absolute convergence implies convergence in the ordinary sense.)
A convergent improper integral that does not converge absolutely is condi-
tionally convergent.

An improper integral f: f(z,y)dx converges uniformly on a set S of
values of y if and only if the corresponding limit converges uniformly on S. A
relevant theorem is given below.

& Continuity theorem

If f(x,y) is a continuous function, then f; f(z,y)dx is a continuous
function of y in every open interval where the integral converges uniformly.

3.4.3 Principal Value Integral

Suppose that a bounded or unbounded open or closed interval, (a,b) or [a, b],
contains a discrete set of points = ¢1, ¢g, - - -, such that f(x) is unbounded in
a neighborhood of x = ¢; (i = 1,2,---). Then, the integral ff f(z)dx may be
defined as a sum of improper integrals, introduced in the previous subsection;
ie.,

b X
/a f(z)dx = Xllggw f( Ydz + zh_}m_o f(x)dz (a<ec<b), (3.32)
b X1
/a f(z)dz = th_)H(‘l . f(z)dz + 21512-5-0 f( Ydz (a <c<b),
(3.33)
%) c X
/ f(z)dr = lim f(z)dx + hm f(x)dx (3.34)
o X1 —00 ' Xo—00

if the limits exists.
Even though the integrals (3.32), (3.33) and (3.34) do not exist, the limits
of integrals

X

lim f(x)dx and lim l/
z—oo | 5—0 a

c—0

b
fw)dz + f(fv)dx]
c+d
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may exist. If any of these limits exist, the corresponding integral, (3.32), (3.33)
or (3.34), is necessarily equal to its principal value integral (see Sect. 9.4.1).

3.4.4 Conditions for Convergence

In what follows we give the convergence criteria for improper integrals of the

form
/'00 f(x)dx

/abf(a:)d:c_ lim Ax,f(x)dx.

and

X—b—0

We assume that f(z) is bounded and integrable on every bounded interval
(a, X) that does not contain the upper limit of integration.

& Cauchy’s test (= necessary and sufficient conditions for conver-
gence):

The improper integral faoo f(@)dx converges if and only if for every pos-
itive real number ¢, there exists a real number M > a such that

X2

Xo> X4 >M = (x)dz| < e.

X1

Similarly, faoo f(z)dx converges if and only if for every positive €, there
exists a positive § < b — a such that

X2

b—Xo<b—-—X1 <0 = (x)dz| < e.

X1

Necessary and sufficient conditions for an improper integral to converge uni-
formly are stated below.

& Welierstrass test

The improper integral faoo f(z,y)dx [or f: f(z,y)dx] converges uni-
formly and absolutely on every set S of values of y such that | f(z,y)| < g(x)
on the interval of integration, where g(z) is a real comparison function

whose integral [ g(z)dz [or f; g(x)dx, respectively| converges.
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Exercises

oo :

sinx
1. Show that the integral / ——dx converges.
x

™

Solution: We have

Aging —Ccosx 4 A cosz
dr < — 5 dx,
x T T . .
so that

/Asmmd <= + +/ .
o 4 roA) "

This completes the proof. &

®|sinx

2. Show that / dx diverges.

1

Solution: It follows that

(n+1)m L 1 ™
/ dx :/ S dx > / sin xdx
n o Tt (n+ 1) Jo

2 >2/”+2dac
IRCES L T

Hence, for n > 1 we have
nm 2 n+1 dI
/

1

d:c>f/ — = —log(n+1) - 00, (n—0). &
™ Jo X 71—

3. Suppose that f(x) is continuous within an interval (a,b] and diverges at

b

x = a Prove that / f(z)dz converges if (x —a)P|f(x)| is bounded on the

sinx

xT

sinx

a
interval for 0 < p < 1.

Solution: We assume that there is an appropriate positive num-
ber M such that

(x —a)P|f(z)| < M for all z € (a,b].
Then we obtain

/b Flde < a [ :M[“‘p)l"’];

ate a+te (LE - a)p 1- p

_l —a)lmp _l-p % _ N\-p
—1_p[(b a) 5 ]<1_p(b a)

(since 1 —p > 0). (3.35)
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Note that the integral on the left-hand side of (3.35) is mono-
tonically increasing with decreasing e, since |f(z)| > 0 over the
integration interval. Yet it is bounded from above, as proved in

(3.35). Hence, we conclude that the given integral is convergent
(absolutely). &

4. Suppose that f(z) is continuous within [a,00) and that zP|f(z)| is

b
bounded there for p > 1. Show that the integral / f(z)dz converges.
a

Solution: It follows from hypothesis that there is a positive
number M such that

2P|f(x)] < M forall z > a.

Hence, we have for any X > a,

X X X
dx —M 1 M 1
d M — =
/a |f(l‘)| T < /a P pfl |:1:p1:|a <p71apfl7

which completes the proof. &
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Hilbert Spaces

Abstract A Hilbert space is an abstract vector space with the following two prop-
erties: the inner product property (Sect. 4.1.3), which determines the geometry of
the vector space, and the completeness property (Sect. 4.1.6), which guarantees the
self-consistency of the space. Most of the mathematical topics covered in this volume
are based on Hilbert spaces. In particular, L? spaces and I? spaces (Sect. 4.3), which
are specific classes of Hilbert spaces, are crucial for the formulation of the theories
of orthonormal polynomials, Lebesgue integrals, Fourier analyses, and others, as we
discuss in subsequent chapters.

4.1 Hilbert Spaces

4.1.1 Introduction

This section provides a framework for an understanding of Hilbert spaces.
Plainly speaking, Hilbert spaces are the generalization of familiar finite-
dimensional spaces to the infinite-dimensional case. In fact, the geometric
structure of Hilbert spaces is very similar to that of ordinary Euclidean geom-
etry. This analogy comes from the fact that the concept of orthogonality can
be introduced in any Hilbert space so that the familiar Pythagorean theorem
holds for elements involved in the space. Moreover, owing to its generality,
a large number of problems in physics and engineering can be successfully
treated with a geometric point of view in Hilbert spaces.

As we shall see later, Hilbert spaces are defined as a specific class of vector
spaces endowed with the following two properties: inner product and com-
pleteness. The former property leads to a rich geometric structure and the
latter enables us to describe an element in the space in terms of a set of or-
thonormal bases. These facts result in the possibility of establishing a wide
variety of complete orthonormal sets of functions in Hilbert spaces;
we discussed this point in detail in Sects. 5.1 and 5.2. For a better under-
standing of subsequent discussions, we provide all necessary definitions in
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this section, and then describe several important consequences relevant to an
understanding of the nature of Hilbert spaces.

4.1.2 Abstract Vector Spaces

In order to make this text self-contained, we first give a brief summary of the
definition of vector spaces. A more precise description of vector spaces and
some related matters will be provided in Sect. 4.2.1.

& Vector spaces:
A vector space V is a collection of elements called vectors, which we
denote by x,y, - - -, that satisfy the following postulates:
1. There exists an operation (+) on the vectors x and y such that x +y =
y + x, where the resultant quantity y + @« also must be a vector.
2. There exists an identity vector (denoted by 0) that yields  +0 = x.
3. For every x € V, there exists a vector ax € V in which « is an arbitrary
scalar (real and complex). In addition,

a(fx) = (af)x, 1(xz) =« for all x,
a(x+y) = ax + oy, (a+ B)x = azx + px.

Emphasis is placed on the fact that vector spaces are not limited to a set
of geometric arrows embedded in a Euclidean space (see Sects. 4.1.3 and
19.2.3); rather, they are general mathematical systems that have a specific
algebraic structure. Several examples of such abstract vector spaces are given
below.

FEzxzamples 1. The set of all n-tuples of complex numbers denoted by

x = (£1,8, &)

forms a vector space if the addition of vectors and the multiplication of a
vector by a scalar are defined by

T+y= (517523"' 7§n)+(771;772,"' 77777,)
= (51 +771a§2+7]2,"' 7§n+nn)a
ar = a(£17§27 e 7£n) = (aglaa§27 e 70[6”)

2. The set of all complex numbers {z} forms a complex vector space (see
Sect. 4.2.1), where z; + 22 and «z are interpreted as ordinary complex
numerical addition and multiplication,

3. The set of all polynomials in a real variable x, constituting the set
{1, 2,22, 23 -}, with complex coefficients is a complex vector space if
vector addition and scalar multiplication are the ordinary addition of two
polynomials and the multiplication of a polynomial by a complex number,
respectively.
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4.1.3 Inner Product

The structure of a vector space is enormously enriched by introducing the
concept of inner product, which enables us to define the length of a vector
in a given vector space or the angle between the two vectors involved.

& Inner product:
An inner product is a scalar-valued function of the ordered pair of vectors
x and y such that
1. (z,y) = (y,x)"
2. (ax+ Yy, z) = a*(x, z) + *(y, z), where o and [ are certain complex
numbers.
3. (z,z) > 0 for any «; (x,x) = 0 if and only if = 0.
Here, the asterisk (x) indicates that one is to take the complex conjugate.

Remark. Vector spaces endowed with an inner product are called inner prod-
uct spaces. In particular, a real inner product space is called a Euclidean
space and a complex inner product space is called a unitary space.

The algebraic properties 1 and 2 are in principle the same as those governing
the scalar product in ordinary vector algebra in a real vector space. The
only property that is not obvious is that in a complex space, the inner product
is not linear, but rather conjugate linear with respect to the first factor, i.e.,

(az,y) = " (z, y).

Ezamples 1. The simplest, but an important, example of an inner product
space is the space, denoted by C, that consists of a set of complex numbers

{z1,22, -+, zn}. For two vectors & = (£1,&2,---&,) and y = (91,12, 1)
on C, the inner product is defined by

(@,y) =D &
1=1

2. Suppose that f(z) and g(z) are polynomials in the complex vector space
defined on the closed interval z € [0,1]. They then constitute an inner
product space under the inner product defined by

(f.9) = / f(@) g(@yw(e)de,

where w(z) is a weight function. The weight function becomes impor-
tant when defining the inner product of polynomials, which is treated in
Chap. 5.
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3. Iz = [£1,8,85,&)] and y = [n1,12,13,n4] are column four-vectors
having real-valued elements, then the quantity

(@, y) = &m + Eamz + E3m3 — Sama (4.1)

satisfies requirements 1 and 2 for an inner product, but not 3 since the
quantity (x, ) is not positive-definite. Thus the entity (4.1) is not an inner
product, but it plays an important role in the theory of special relativity.

For a complex vector space, the inner product is not symmetrical as it is in
a real vector space. That is, (¢, y) # (y,x) but rather (z,y) = (y,z)*. This
implies that (i, x) is real for every x, so we can define the length of the vector
x by

]| = (z,2)"/>.
Since (z,x) > 0, ||z|| is always nonnegative and real. The quantity ||z|| is
referred to as the norm of the vector x. Note also that

1/2 _ 1/

laz]| = (az,az)"/? = [o*a(,x)]"/* = |a - |||

Remark. Precisely speaking, the quantity ||| introduced above is a special
kind of norm that is associated with an inner product; in fact, the norm was
originally a more general concept that was independent of the inner product
(see Sect. 4.2.2).

4.1.4 Geometry of Inner Product Spaces

Once a vector space is endowed with an inner product, several important the-
orems that can be easily interpreted in analogy with Euclidean geometry can
be applied. The following three theorems characterize the geometric nature of
inner product spaces (x # 0 and y # 0 are assumed; otherwise the theorems
all become trivial).

& Schwarz inequality:
For any two elements  and y of an inner product space, we have

(@, 9) < [z llyl- (4.2)

The equality holds if and only if  and y are linearly independent.

Proof From the definition of the inner product, we have

0< (@+ay,z+ay)=(z,z)+ oz, y) +ao*(y,z)+|af(y,y). (43)
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Now, set & = —(x,y)/(y,y) and multiply by (y,y) to obtain

0< (w7x)(yay) - |($7y)|2 )

which gives Schwarz’s inequality.
Next, we prove the statement of the equality in (4.2). If  and y are linearly
dependent, then y = ax for some complex number « so that we have

(@, y)| = [(z, az)| = [a|(z, ) = |afl|lz|| [ = [lz[| [az| = [lz]| [[y]].
The converse is also true; let  and y be vectors such that |(x,y)| = ||z ||y]|,
or equivalently,

(. 9)|* = (z, ) (y, 2) = (z,2)(y, y) = [l=|* |y (4.4)

Then we set

[y, y)z — (y,2)y|?

= llyl* =l + [, ) lyl* = llyl* (. @) (2, y) — ly|* (v, 2)" (y, )
—0, (4.5)

where the postulate (4.4) and the relation (y,xz)* = (x,y) were used. The
result (4.5) means that

(y,y)w - (:Evy)y =0,

which clearly shows that & and y are linearly dependent, which completes the
proof. &

& Triangle inequality:
For any two elements @ and y of an inner product space, we have

& +yll < llzll + [yl

Proof Setting « = 1 in (4.3), we have

lz+y|? = (z,z) + (y,y) + 2Re(z, y)
< (z,x) + (y,9) +2|(z, )]
< |lz|* + [lyl* + 2||lz|lyll (by Schwarz's inequality)

= (] + lyl)*,

which proves the desired inequality. o
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& Parallelogram law:
For any two elements  and y of an inner product space, we have

lz + 411 + [l = ylI* = 2 (l=l* + ly]I*) -

Proof We have

lz +ylI” = (@, ) + (z,y) + (y, ) + (v, y)
= lzl* + (z.y) + (y, =) + [ly*. (4.6)

Now replace y by —y to obtain

le = yll* = lz|* — (z. ) - (y.2) + |yl* (4.7)
By adding (4.6) and (4.7), we attain our objective. &

4.1.5 Orthogonality

One of the most important consequences of having the inner product is being
able to define the orthogonality of vectors. The orthogonality allows us to
establish a set of orthonormal bases that span the inner product space in
question, thus yielding a useful way to analyze both the nature of the space
itself and the relation between the constituents involved in that space.

& Orthogonality:
Two vectors & and y in an inner product space are called orthogonal
if and only if (z,y) = 0.

Notably, if (x,y) = 0, then (x,y) = (y,x)* = 0 so that (y,x) = 0 as well.
Thus, the orthogonality is a symmetric relation, although the inner product
is not symmetric. Note also that the zero vector 0 is orthogonal to every
vector in the inner product space.

A set of n vectors {x1, @2, - - @, } is called orthonormal if (x;, z;) = §;;
for all 7 and j, where d;; is the Kronecker delta. That is, the orthonormality
of a set of vectors means that each vector is orthogonal to all the others in
the set and is normalized to unit length.

It follows that any vector & may be normalized by dividing by its length to
form the new vector /||x|| with unit length. An example of an orthonormal
set of vectors is the set of three unit vectors, {e;} (i = 1,2,3), for the three-
dimensional Cartesian space.

The following theorem is important in various fields of mathematical
physics.
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& Theorem:

An orthonormal set is linearly independent.

(Proof of the theorem is given in Exercise 1). Importantly, the above theorem
suggests that any orthonormal set serves as a basis for an inner product space
of interest (see Sect. 4.2.5). Below is another consequence of the orthonormal
set of vectors; its proof is given in Exercise 2.

& Bessel inequality:

If {x1, 29, - ,x,} is a set of orthonormal vectors and « is any vector
defined in the same inner product space, then

el = Iril?, (4.8)

where 7; = (x;, ). Furthermore, the vector ' =  — ), r;x; is orthogonal
to each x;.

4.1.6 Completeness of Vector Spaces

Having described features of inner product spaces, we turn now to an-
other important concept relevant to the nature of Hilbert spaces, i.e., com-
pleteness. When a vector space is finite dimensional, the completeness
of an orthonormal set involved in the space may be characterized by the
fact that it is not contained in any larger orthonormal set. (This is intu-
itively understood by considering the Cartesian basis e; (i = 1,2,3) in a
three-dimensional Euclidean space.) When considering an infinite-dimensional
space, however, the completeness must be determined via the Cauchy cri-
terion, which we discussed in Sect. 2.2. The following is a preliminary
definition

& Cauchy sequence of vectors:

A sequence {x1, s, -} of vectors is called a Cauchy sequence of
vectors if for any positive € > 0, there exists an appropriate number N
such that ||z, —x,| < e for all m,n > N.

In plain words, a sequence is a Cauchy sequence if the terms x,, and x,, in
the sequence come closer and closer to each other as m,n — oo
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& Convergence of a sequence of vectors:
A sequence {x1, s, -} is said to be convergent if there exists an ele-
ment x such that ||z, — x| — 0.

& Completeness of a vector space:

If every Cauchy sequence in a space is convergent, we say that the space
is complete.

Remark. Here the norm ||z = (x,x)'/? associated with an inner product is

employed to define a Cauchy sequence, since we are focusing on inner product
spaces. However, the concepts of Cauchy sequence and completeness both
apply to more general vector spaces in which even a norm is unnecessary (see
Sect. 4.1.6 for details).

4.1.7 Several Examples of Hilbert Spaces

Now we are ready to define Hilbert spaces.

& Hilbert space:

If an inner product space is complete, it is called a Hilbert space.

Ezxamples 1. Column-vector spaces with n real and complex components,
denoted by R™ and C", respectively, are finite-dimensional Hilbert spaces
if endowed with an inner product (x,y) = Y ., #;y;. Completeness can
be proved using the Bolzano-Weierstrass theorem (see Appendix A).

2. Assume an infinite-dimensional vector & = (z1, z2, - ), where x; is a real

or complex number satisfying the condition

oo

Z |z < o0.

i=1

Then, vector spaces spanned by a set of vectors {x}, called /2 spaces (see
Sect. 4.3), are Hilbert spaces under the inner product

(o]
(z.y) =Y iy
i=1

Completeness will be proved in Sect. 4.3.1.
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4. Assume a set of square-integrable functions f(z) expressed by

b
/ I ()2 < oo,

Then, the collection of all square-integrable functions, called the L? space,
is a Hilbert space endowed with the inner product

b
(f9) = [ 1) g(a)da. (49)
Completeness will be proved given in Sect. 4.3.2.
5. Finally we show an example of an incomplete inner product space. Assume

the following sequence of real-valued continuous functions { f1(z), fo(x),- - },
each of which is defined within the interval [0, 1]:

1, for O§x§%,
fn(x) l1-2n(z—1)for 1 <a< 41, (4.10)
0, for QL+%<$§1

The graphs of f,(z) for n = 1,2,3 are given in Fig. 4.1. After some
algebra, we obtain

1/2

1500 = d@) = [ [ = g ]

1
:(1—2) — =0 asm,n—o00 (m>n).
m 6n
y
1
n=1
2
3
0 1/2 1 X

Fig. 4.1. The function f,(x) given in (4.10). The sequence {f.(x)} converges to a
step function in the limit of n — oo
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Thus, {f,} is a Cauchy sequence owing to the inner product given by
(4.9). However, this sequence converges to the limit function

which is not continuous and, hence, is not an element of the original inner
product space. Consequently, the sequence is not complete, and thus is
not a Hilbert space.

Exercises

1. Show that an orthonormal set is linearly independent.
Solution: Recall that a set of vectors {@y, xa, - @, } is said to
be linearly independent if and only if

Zaiwi =0 = a«a; =0 forall i.
i=1

Now suppose that a set {1, €2, - ,@,} is orthonormal and sat-
isfies the relation ), a;x; = 0. Then, for any j, the orthonormal
condition (x;,x;) = 0;; results in

n n
0= Ty, E a;r; | = E cv,»(zcj,wi) = E Oéiéij = Q.
i=1 i=1 %

Therefore, the set is linearly independent. &

2. Show the Bessel inequality for  given by 4.8 and the orthogonality of the
vector ' = x — ) . r;x; to each x;.

Solution: We consider the inequality

n
0<||2'|]? = (2/,2') = | = — Zﬁ'iﬂi, T — erzcj
i=1
n
(z,x) Z ri(z;,x Zr] T, x;) Z riri(x;, x;)
n
= [|e]|* - Z|7"z|2 Z|TJ|Q+Z\TJ|2
= \|96||2*Z|7”z‘|2~
i=1
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Thus we have ||z||> > Y, |r;|%. The second part of the theorem is
proven by

(', x;) = (z,x;) — er(mi,;cj) = r;‘ — r;‘ =0. &
i

4.2 Hierarchical Structure of Vector Spaces

4.2.1 Precise Definitions of Vector Spaces

In this section, we look at the hierarchical structure of abstract vector spaces.
We will find that the Hilbert spaces that we have considered form a very
limited, special class of general vector spaces under strict conditions. We begin
with an exact definition of vector spaces.

& Vector spaces:

A vector space V is a set of elements x (called vectors) that satisty the
following sets of axioms:

1. V is a commutative group under addition:
(i) x+y=y+x €V forany x,y € V (closedness).
(ii) z+ (y + 2) = (x + y) + z (associativity).
(iii) There exists an addition identity, the zero vector 0, for every @ € V
such that x +0 = x.
(iv) There exists an additive inverse —a for every & € V such that
x+ (—x)=0.

2. V satisfies the following additional axioms with respect to a number
field F', whose elements « are called scalars:
(i) V is closed under scalar multiplication:

ax € V  for arbitrary * € V and « € F.

(i) Scalar multiplication is distributive with respect to elements of both
V and F:

alx+y)=ar+ay, (a+pf)x=azx-+ .

(iii) Scalar multiplication is associative: «a(fx) = f(ax).

(iv) Multiplication with the zero scalar 0 € F’ gives the zero vector such
that Oz =0 € V.

(v) The unit scalar 1 € F has the property that la = x.

In these definitions, F' is either the set of real numbers, R, or the set of
complex numbers, C. A vector space over R is called a real vector space.
If F = C, then V is a complex vector space.
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4.2.2 Metric Space

Once a vector space is endowed with the concept of a distance between the
elements, say, x € V and y € V, it is called a metric space.

& Metric space:

Assume a vector space V. A metric space is the pair (V, p) in which the
function p : V x V — R, called the distance function, is a single-valued,
nonnegative, real function that satisfies:

1. p(z,y) =0 if and only if = y.
2. p(z,y) = p(y, x).
3. p(z,y) < p(x, z) + p(z,y) for any z € V.

Remark. Strictly speaking, the above is called a metric vector space as a subset
of more general metric spaces. The latter consists of a pair (U, p), where U is
a set of points (not necessarily vectors) and p is a distance function. If U is a
vector space V', then (V] p) is called a metric vector space.

Ezamples 1. If we set

_Joif z=1y,
p(w’y)_{lif z+y

for arbitrary «,y € V, we obtain a metric space.

2. The set of real numbers R with the distance function p(z,y) = |z — y|
forms a metric space.

3. The set of ordered n-tuples of real numbers = (z1, 22, - , 2, ) with the

distance function
n 1/2
p(z,y) = [Z (i — yiﬁ]

i=1
is a metric space. This is in fact the Euclidean n-space, denoted by R".

4. Consider again the set of ordered n-tuples of real numbers ¢ = (z1,
Za,- -+ ,T,) with an alternative distance function:

p(x,y) =max[|z; —y;|; 1 <i<n].
This also serves as a metric space. The validity of Axioms 1-3 mentioned
above is obvious.

Comparison between Examples 3 and 4 tells us that the same vector space
V can be metrized in different ways. These two examples call attention
to the importance of distinguishing a metric space (V,p) from the vector
space V.
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4.2.3 Normed Spaces

A metric space is said to be normed if for each element € V there is a
corresponding nonnegative number |||, which is called the norm of .

& Normed space:

A metric space equipped with a norm is called a normed space. The
norm is defined as a real-valued function (denoted by || ||) on a vector space
V', which satisfies

1. ||[Az| = [A|||z|| for all A € F and « € X.
2. |l +y| <z + [lyll
3. ||z|| = 0 if and only if = 0.

Obviously, a normed space is a metric space under the definition of the dis-
tance p(z,y) = |z — y]|.

Examples 1. The space consisting of all n-tuples of real numbers: ©* =
(21,29, - ,x,) in which the norm is defined by

n 1/2
ol (3o)
i=1
is a normed space.

2. The space above can be normed by a more general form:

n 1/p
=l = (fo> (v>1)

This norm is referred to as a p-norm of the vector x.
3. We further obtain an alternative normed space if we set the norm of the
vector = (x1, 2, , Tn) equal to the max {|zg]; 1 <k <n}.
4. The collection of all continuous functions defined on the closed interval
[a,b] in which
[ (@)l = max{|f(z)| : x € [a,0]}

is a normed space.
5. The space consisting of all sequences © = (z1, 2, - , &, ) of real numbers
that satisfy the condition lim,, .., z,, = 0 is a normed space if we set

||| = max{|zg|: 1 <n < oo}
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4.2.4 Subspaces of a Normed Space

A class of normed spaces involves the following two subclasses: one endowed
with completeness and the other with the inner product. The normed spaces
of the former class, i.e., a class of complete normed vector spaces, are called
Banach spaces.

& Banach space:

If a normed space is complete, it is called a Banach space.

Here, the completeness of a space implies that every Cauchy sequence in the
space is convergent. Refer to the arguments in Sect. 4.1.6 for details.

Remark. Every finite-dimensional normed space is a Banach space, since it is
necessarily complete.

Ezamples 1. Suppose that a set of infinite-dimensional vectors @ = (x1, x2, - - -
Zn, - ) satisfies the condition

Sl < o0, (p = 1).
i=1

Then, this set is a Banach space, called an /P space, under the p-norm

defined by
o l/p
], = (Z ml”) : (4.11)

i=1
The proof of its completeness is given in Sect. 4.3.1.
2. Assume a set of functions f(z) expressed by

b
/ \f(2)|Pdz < oo,

Then, this set constitutes a specific class of Banach spaces, called an LP
spaces, under the p-norm:

b 1/p
||f|p—< / If(fv)l”d:c> | (4.12)

Completeness is proved in Sect. 4.3.2.

Now we focus on the counterpart, i.e., a noncompleted normed space endowed
with an inner product known as a pre-Hilbert space.



4.2 Hierarchical Structure of Vector Spaces 87

& Pre-Hilbert space:

If a normed space is equipped with an inner product (not necessarily
complete), then it is called a pre-Hilbert space.

Finally, we are at a point at which we can appreciate the definition of Hilbert
spaces. They are defined as the intersection between Banach spaces and pre-
Hilbert spaces as stated below

& Hilbert space:

A complete pre-Hilbert space, i.e., a complete normed space endowed
with an inner product is called a Hilbert space.

Ezamples The ¢P spaces and LP spaces with p = 2, known as the /2 spaces
and L? spaces, are Hilbert spaces. The inner product of each space, respec-
tively, is given by

leyl and (f,9) /f (4.13)

Remark. Clearly the quantities (x,)'/? and (f, f)'/2, defined through the
inner products (4.13), are special cases of the p-norm given by (4.11) and
(4.12), respectively, with p = 2. In fact, for the /2> and L? spaces, the inner
products are defined such that

(z,x) = z|* and (f.f) = [IfI*

However, for /P and LP spaces with p # 2, we cannot introduce inner products
as

(@,z) = (|=lp)" and (f.f) = (Ifll»)"

because unless p = 2 the p-norm violates the parallelogram law. Accordingly,
among the family of /7 and LP, only the spaces ¢? and L? can be Hilbert
spaces because they have an inner product.

4.2.5 Basis of a Vector Space: Revisited

For use in Sect. 4.2.6, we briefly review the definition of a basis in a finite-
dimensional vector space and related matters.
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& Linearly independent vector:

A finite set of vectors, say, ej,es,--- , e, is linearly independent if
and only if
D ciel; =0 <= ¢ =0 foralli. (4.14)
i
This definition applies to infinite sets of vectors ey, es, - - - if the vector space

under consideration admits a definition of convergence (see Sect. 4.2.6 for
details).

& Basis of a vector space:

A basis of the vector space V is a set of linearly independent vectors
{e;} of V such that every vector « of V can be expressed as

T = Zaiei. (4.15)
i=1

Here, the numbers «aq,as,--- ,a, are coordinates of the vector x with
respect to the basis, and they are uniquely determined owing to the linear
independence property.

Therefore, every set of n linearly independent vectors is a basis in a finite-
dimensional vector space spanned by n vectors. The number n is called the di-
mension of the vector space. Obviously, an infinite-dimensional vector space
does not admit a finite basis, which is why it is called infinite-dimensional.

4.2.6 Orthogonal Bases in Hilbert Spaces

For any vector space (finite- or infinite-dimensional), a set of orthogonal vec-
tors {x,} is called an orthogonal basis if it is complete. Similarly, a com-
plete orthogonal set of vectors is called an orthonormal basis if the norm
||l = 1 for all n. It is convenient to use orthonormal bases in studying
Hilbert spaces, since any vector in the space can be decomposed into a linear
combination of orthonormal bases. However, when we choose some basis for
an infinite-dimensional space, some care must be taken to examine its com-
pleteness property; i.e., an infinite sum of vectors in a vector space may or
may not be convergent to the identical vector space.

To examine this point, let us consider an infinite set {e;} (i =1,2,---) of
orthonormal vectors all belonging to a Hilbert space V. We take any vector
x € V and form the set of vectors

n
T, = Z c;€e;, (416)
i=1
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where the complex number ¢; is the inner product of e; and x expressed by
ci = (e, x).

For the pair of vectors  and «,,, the Schwarz inequality (4.2) gives

(@, 2,)|” < ||zl 2ol = [l (Z |Ci|2> : (4.17)
i=1

On the other hand, taking the inner product of (4.16) with « yields

n

(@ 20) =D ci(@,e) =D _leil”- (4.18)

i=1

From (4.17) and (4.18), we have

n
Yo lel’ < 2l
i=1

This conclusion is true for arbitrarily large n and can be stated as shown
below.

& Bessel inequality:

Let {e;} (z = 1,2,---) be an infinite set of orthonormal vectors in a
Hilbert space V. Then for any € V with ¢; = (e;, ), we have

o

> lal® < ll=ll?,

i=1

which is known as the Bessel inequality.

The Bessel inequality shows that the limiting vector

nILH;o Zciei = Zciei (4.19)
i=1 i=1

has a finite norm, which means that the vector (4.19) is convergent. However,
we still do not know whether it converges to . To make such a statement, the
set {e;} should be equipped with the completeness property defined below.

& Complete orthonormal vectors:

An infinite set of orthonormal vectors {e;} in a Hilbert space V is called
complete if the only vector in V' that is orthogonal to all the e; is the zero
vector.
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The following is an immediate consequence of the above statement.

& Parseval identity:

Let {e;} be an infinite set of orthonormal vectors in a Hilbert space V.
Then for any x € V,

{ei} is complete
= |z|* = Z lci|? with ¢; = (eq, ). (4.20)
i=1

Proof Suppose that the set {e;} is complete and consider the vector defined

by
oo
Yy=x— Z Ci€q,
i=1

where & € V and ¢; = (e;, z). It follows that for any e;,

(ej,y) = (ej,x ch €;,€e;) =cj — Zczﬁji =0. (4.21)
i=1 i=1

In view of the definition of the completeness of {e;}, (4.21) means that y is
the zero vector. Hence, we have

o0
r = Zciei,
i=1
which implies
o0
2] =" leif*.
i=1

We now consider the converse. Suppose @ to be orthogonal to all the {e;},
which means
(e;,x) =¢; =0 for all 4. (4.22)

It follows from (4.20) to (4.22) that ||z||> = 0, which in turn gives x =
0, because only the zero vector has a zero vector. This completes the
proof. o

We close this section by providing precise terminology for the basis of a Hilbert
space.
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& Basis of a Hilbert space:

A complete orthonormal set {e;} (¢ = 1,2,---) in a Hilbert space V is
called a basis of V.

Remark.

1. The concept of completeness of an orthonormal set of vectors is distinct
from the concept of completeness of the Hilbert space, but they are mu-
tually related.

2. In order to define generalized Fourier coefficients ¢; = (e;, x) for
x €V (see Sect. 4.3.4), it suffices for the set {e;} to be only orthonormal,
nor necessarily complete.

4.3 Hilbert Spaces of £? and L?

4.3.1 Completeness of the £2 Spaces

In this subsection, we examine the completeness property of the space £ on
the field F' (here FF = R or C). As already noted, the completeness of a given
vector space V' is characterized by the fact that every Cauchy sequence ()
involved in the space converges to an element € V' such that lim,,_, || —
x,|| = 0. Hence, to prove the completeness of the £? space, we show in turn
that (1) every Cauchy sequence (x,,) in the /2 space converges to a limit a,
and (2) the limit & belongs to £2.
We consider Statement (1). Assume a set of infinite-dimensional vectors

™ = (xﬁ”’,mé”), ‘ ) )

wherein xgn) € F, and let the sequence of vectors {:c(l), x® ... } be a Cauchy

sequence in the sense of the norm

. 1/2
|| = <Z |in2> < oo.
i=1

Then, for any £ > 0, there exists an integer N such that

- o\ /2
= <Z ‘xl(m) - xl(n) ) <e. (4.23)
i=1

m,n>N = Hw(m) — ™
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This implies that
(m)

2

x;, = mf")’ <e (4.24)

for every i and every m,n > N. Furthermore, since (4.23) is true in the limit
m — oo, we find

—

’ <e (4.25)

for arbitrary n > N. The inequalities (4.24) and (4.25) mean that (™ con-
verges to the limiting vector expressed by & = (x1, x2, ---), in which the
component z; € F' is defined by
z; = lim 2", (4.26)
n—oo
(That the limit (4.26) belongs to F' is guaranteed by the completeness of F'.)
The remaining task is to show that the limiting vector & belongs to the
original space ¢2. By the triangle inequality, we have

o) = |} - 2 + 2

<f-o0

o

Hence, for every n > N and for every € > 0, we obtain

lz|| <e+ Haz(")

As the Cauchy sequence (™), 2 -..) is bounded, ||| cannot be greater
than
¢ + lim sup Hm(i) H
71— 00
and is therefore finite. This implies that the limit vector & belongs to ¢*(F).
Consequently, we have proven that the space ¢?(F) is complete.

Remark. Among the various kinds of Hilbert spaces, the space ¢2 has a sig-
nificant importance in mathematical physics, mainly because it provides the
groundwork for the theory of quantum mechanics. In fact, any element x of
the space (2 satisfying the normalized conditions ||| = Y-, |z;|? = 1 works
as a possible state vector of quantum systems. In the Heisenberg formula-
tion of quantum mechanics, the infinite-dimensional matrices corresponding
to physical observables act on these state vectors.

4.3.2 Completeness of the L? Spaces

We next consider another important class of Hilbert spaces, called L? spaces,
which are spanned by square-integrable functions { f,,(x)} on a closed interval,
say [a,b]. To prove the completeness of the L? space, we show that every
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Cauchy sequence {f,} in the L? space converges to a limit function f(z), and
then verify that the f belongs to L2.

Let {f1(z), f2(z),--} be a Cauchy sequence in L?. Then for any small
e > 0, we can find an integer N such that

b
m,n >N = ||fn—fm||—\// |fo(@) = fin(2)]? do < e.

Then, it is always possible to find an integer n; such that

1

n>n = f (@) = fal@)ll < 5

By mathematical induction, after finding ny_1 > ng_o, we find ny > np_1
such that

1

w1 @l < (5)

In this way, we obtain a sequence (f,, ) that is a subsequence such that

k
s @) = el < (3) for k=12,

or equivalently,

00 00 1 k
ol + 3 W = Sl < Ul + 2 (5) =Ml +1= 4,
k=1

k=1

where A is a finite constant. Let

9k = |fn1‘+|fn2_fn1|+"'+|fnk+1 _fnk‘ (k:1727)

Then, by the Minkowski inequality, we have

b ) b 9
/ gk (2)]2 i = / [l 4 g = Fl = s — ]

k
< ('fnln + Z ani+1 - fTM
i=1

Let g(x) = lim gg(x). Then [g(z)]? = lim[gx(2)]?, and

2
> < A? < 0. (4.27)

b b b
/ lg(2)]2dz = / Jim [gp(@)*do = Jim [ (@) dr. (429)

o0
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[See the remark below for the interchangeability of the limit and integral signs
n (4.28).] It follows from (4.27) and (4.28) that

b
/mm%xm,

or equivalently,

b 0o 2
@ k=1

This implies that the infinite sum

”fnl” +Z‘|f7lk+l 7f'n«k|| (429)

k=1

converges to a function, denoted by f € L?, in the sense of the norm in L2.
We next show that the limit function f(z) expressed by (4.29) is an element
of L? such as
[ fn(z) = f(2)| =0 (n— o0). (4.30)
We first note that

F@) = fu, (@) =D (s = (@)] -
k=j

It follows that

- = /1\* 1
Hf_fn]HSZ||fnk+1_f”k||<Z<2) :2j_1’
k=j k=g

so we have
s [~ £, =0
Observe that
1fr = FI < M fn = Frill + 11 i = I

where ||f, — fn. || = 0 as n — oo and k& — oo; thus
T [[f— =0,
which shows that the Cauchy sequence (f,,) converges to f € L?.

Remark. The interchangeability of limit and integral signs in (4.28) is justified
by the following three facts:

(i) The sequence ([gx(z)]?) is a sequence of square-integrable functions in
[a, 0],
(ii) [gx(z)]? > 0 for all k, and
(iii) The integral f; [gr])?dz for each k has a common bound A? as shown in
(4.27). The proof of this point is based on the theory of the Lebesgue
integral, which we discuss in Chap. 6.
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4.3.3 Mean Convergence

Before proceeding, comments on a new class of convergence that is relevant
to the argument on the completeness of the L? space are in place. Observe
that the expression (4.30) is rephrased in the following sentence: For any small
e > 0, it is possible to find N such that

n>N = |f(z)— fulz)|]| <e. (4.31)

Hence, we can say that the infinite sequence ( f,,) converges to f(x) in the norm
of the L? space. Convergence of the type (4.31) is called the convergence
in the mean or the mean convergence, which is inherently different from
the uniform convergence and the pointwise convergence. The point is the fact
that in the mean convergence, the quantitative deviation between f,, (x) and
f(x) is measured not by the difference f(x) — f,(z), but by the norm in the
L? space based on the integration procedure:

1/2

b
1f(2) = fu(@)ll = V £ () = fol@)da]* da

Hence, when f(z) is convergent in the mean to f,(z) on the interval [a,b],
there may exist a finite number of isolated points such that f(z) # fn(z).
Obviously, this situation is not allowed in cases of uniform or pointwise con-
vergence.

4.3.4 Generalized Fourier Coefficients

Having clarified the completeness property of the two specific Hilbert spaces,
£? and L?, we introduce two important concepts: generalized Fourier co-
efficients and generalized Fourier series. We shall see that they play a
crucial role in revealing the close relationship between the two distinct Hilbert
spaces ¢ and L?.

# Generalized Fourier coefficients:

Suppose that a set of square-integrable functions {¢;} is orthonormal
(not necessarily complete) in the norm of the L? space. Then, the numbers

ck = (f, dr) (4.32)

are called the Fourier coefficients of the function f € L? relative to the
orthonormal set {¢;}, and the series

Z Ck Pk (4.33)
k=1

is called the Fourier series of f with respect to the set {¢;}.



96 4 Hilbert Spaces

Remark.

1. In general, the Fourier series shown in (4.33) may or may not be con-
vergent; its convergence property is determined by the features of the
functions f and the associated orthonormal set of functions {¢y}.

2. Some readers may be familiar with the Fourier series associated with
trigonometric functions or imaginary exponentials. Notably, however, the
concepts of Fourier series and Fourier coeflicients introduced above are
more general concepts than those associated with trigonometric series.

The importance of the Fourier coefficients (4.32) becomes apparent when we
see that they consist of the ¢2 space. In fact, since c;, is the inner product of
f and ¢y, it yields the Bessel inequality in terms of ¢, and f:

Dol <11 (4.34)
k=1

From the hypothesis of f € L2, the norm | f| remains finite. Hence, the
inequality (4.34) ensures the convergence of the infinite series Y o, |cx|?,
which consists of the Fourier coefficients defined by (4.32). This convergence
means that the sequence of Fourier coeflicients {c} is an element of the space
/2, whichever orthonormal set of functions ¢y (x) we choose. In this context,
the two elements f € L? and ¢ = (c1,c2,-++) € £? are connected via the
Fourier coefficient (4.32).

4.3.5 Riesz—Fisher Theorem

Recall that every Fourier coefficient satisfies the Bessel inequality (4.34).
Hence, in order for a given set of complex numbers (¢;) to constitute the
Fourier coefficients of a function f € L?, it is necessary that the series

o0
D el
k=1

converge. As a matter of fact, this condition is not only necessary, but also
sufficient as stated in the theorem below.

® Riesz—Fisher theorem:

Given any set of complex numbers (¢;) such that

oo

> lekl* < oo, (4.35)

k=1

there exists a function f € L? such that
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cr=(fror) and D ekl = |, (4.36)

k=1

where {¢;} is a complete orthonormal set.

Proof Set linear combinations of ¢y (z) as

Z croi(x (4.37)

=1
where the ¢, are arbitrary complex numbers satisfying condition (4.35). Then,
for a given integer p > 1, we obtain

n+p

2
Ufuip = full® = llens1bner + -+ cnppbnipl> = 3 Je?. (438
k=n-+1

Let p =1 and n — oo. Then, from condition (4.35), we have

||fn+1 - fn” = |Cn—&-1|2 —0 (TL - OO)

This tells us that the infinite sequence { f,, } defined by (4.37) associated with a
given set of complex numbers {¢;} always converges in the mean to a function
felL

Our remaining task is to show that this limit function f(z) satisfies con-
dition (4.36), so we consider the inner product

(fa ¢1) = (fnv(ybz) + (f - fna¢i)a (439)

where we assume n > 4. It follows from (4.37) that the first term on the
right-hand side is equal to ¢;. The second term vanishes as n — oo, since

((f = fo, @) < NIf = fall - l@ell = 0 (n — 00),

where we used the mean convergence of {f,} to f. In addition, the left-hand
side of (4.39) is independent of n. Hence, taking the limit n — oo on both
sides of (4.39), we obtain

(fs ¢i) = ci, (4.40)
which means that c¢; is the Fourier coefficient of f relative to ¢;. From our
assumption, the set {¢;} is complete and orthonormal. Hence, the Fourier
coefficients (4.40) satisfy the Parseval identity:

> lel® = 11£11% (4.41)
k=1

The results (4.40) and (4.41) are identical to condition (4.36), thus proving
the theorem. &



98 4 Hilbert Spaces
4.3.6 Isomorphism between ¢2 and L?

The Riesz—Fisher theorem results immediately in the isomorphism between
the Hilbert spaces L? and ¢2. An isomorphism is a one-to-one correspondence
that preserves the entire algebraic structure. For instance, two vector spaces
U and V (over the same number field) are isomorphic if there exists a one-to-
one correspondence between the vectors x; in U and y, in V, say y, = f(x;),
such that

flaizy + azxa) = aq f(x1) + a2 f(x2).

The isomorphism between L? and ¢? is closely related to the theory
of quantum mechanics, which originally consisted of two distinct theories:
Heisenberg’s matrix mechanics, based on infinite-dimensional vectors, and
Schrédinger’s wave mechanics, based on square-integrable functions. From the
mathematical point of view, the difference between the two theories reduces
to the fact that the former uses the space ¢2, whereas the latter uses the space
L2. Hence, the isomorphism between the two spaces verifies the equivalence
of the two theories describing the nature of quantum mechanics.

Let us prove the above point. Choose an arbitrary complete orthonor-
mal set {¢,} in L? and assign to each function f € L? the sequence
(c1,¢2,+ -+ ,cp,- -+ ) of its Fourier coefficients with respect to this set. Since

o0
Do lenl? = 17 < oo,

k=1

the sequence (ci,ca,- -+ ,Cn,-++) is an element of ¢2. Conversely, in view of
the Riesz—Fisher theorem, for every element (ci,co, -+, ¢y, ) of £2 there
is a function f(z) € L? whose Fourier coefficients are ¢y, ¢, , ¢y, +. This
correspondence between the elements of L? and ¢? is one-to-one. Furthermore,
if

f(x) — (01,02,~~ 767“...)
and
9(x) = (di,da, -~ ,dp,-+),
then
f@)+g(@) e (cr+dy,-cntdp,-)
and

kf(I‘) — (kC]_,kCg,' T 7kcna" ')a

which readily follows from the definition of Fourier coefficients (the reader
should prove it). That is, addition and multiplication by scalars are preserved
by the correspondence. Furthermore, in view of Parseval’s identity, it follows
that

(fvg)==:£:cfd¢ (4.42)
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All of these facts ensure the isomorphism between the spaces L? and ¢2,
i.e., the one-to-one correspondence between the elements of L? and ¢? that
preserves the algebraic structures of the space. In this context, we may say
that every element {c;} in an ¢? space serves as a coordinate system of the L?
space, and vice versa.

Exercises

1. Prove the inequality Z lex|® < |1£]| given in (4.34).
k=1

Solution: Suppose a partial sum S, () = >_}_; ardi(z), where
oy is a certain number (real or complex). Since the set {¢;} is
orthonormal,

1 (@) = Sn ()] Z%be Zak¢k

Kl Z lex)® + Z (ap —er)?.  (4.43)
k=1 k=1

The minimum of (4.43) is assumed if a = ¢x. In that case, the
equation (4.43) reads

n n

If(z) =Y endn@)l® = 1P =D lexl?,

k=1 k=1

which implies Y 7_, |ex|®> < ||f]|?. Since the right-hand side is
independent of n, the value of n can be taken arbitrarily large.
Hence, by taking the limit n — oo, we attain the desired result:

Dz el < IIFIP

2. Verify the equation (f,g) = Z c;d; given in (4.42).

i=1
Solution: This equality is verified because of the relations
(f.f) = > le|* and (g,9) = >0y |di]?, and their conse-
quences:
(F+9.f+9) = (£,/)+2(f.9) Z|cz+d\

— i les)? + ch;di + Z \d;|? .
=1 1=1 1=1
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Orthonormal Polynomials

Abstract The theory of Hilbert spaces we dealt with in Chap. 4 can be used to
construct a number of polynomial functions that are orthonormal and complete in
the sense of the LP space. In this chapter we present three important approaches
for the construction of orthonormal polynomials, based, respectively, on the Weier-
strass theorem (Sect. 5.1.1), the Rodrigues formula (Sect. 5.2.1), and generating
functions (Sect. 5.2.7). We shall find that various orthonormal polynomials relevant
to mathematical physics can be effectively classified by adopting these methods.

5.1 Polynomial Approximations

5.1.1 Weierstrass Theorem

There are a number of special polynomials that play a significant role in
various aspects of mathematical physics: Legendre, Laguerre, Hermite, and
Chebyshev polynomials are well known. For instance, Legendre and Laguerre
polynomial expansions are often used to solve second-order differential equa-
tions having spherical symmetry. The point is that many of these special
polynomials form a complete orthonormal set of polynomials; the ori-
gin of their orthonormality and completeness can be accounted for in terms of
the theory of the Hilbert space L2. Owing to completeness, these special poly-
nomials enable us to produce polynomial approximations of fairly arbitrary
functions with desired accuracy, which serves as a useful device in manipulat-
ing square-integrable functions.

The validity of polynomial approximations is based on the famous
Weierstrass approximation theorem, which states that from the set of
powers of a real variable x one can construct a sequence of polynomials that
converges uniformly to any continuous function within a finite interval [a, b].
From this result, we shall see that it is possible to find various kinds of com-
plete orthonormal sets of polynomials on any interval [a, b].

In what follows, for simplicity we focus on polynomial approximations
only of real-valued functions of a real variable. In the case of a complex-valued
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function, the separate validity of the theorem for each of its real and imaginary
parts ensures the validity of the theorem.

)

Weierstrass approximation theorem:
If a function f(x) is continuous on the closed interval [a, b], there exists

a polynomial such as

Gn(x) = chmk (5.1)

k=0

that converges uniformly to f(z) on [a,b].

The proof will is be given in Appendix C. Several remarks on this theorem

are

given below.

In the polynomial approximation based on (5.1), the values of coefficients
cs,rf) depend on n for fixed m. Thus, in order to improve the accuracy of
the approximation by going to polynomials of higher degree, the earlier
coefficients must change. For instance, when the approximating polynomial

(5.1) is replaced by
n+1

Gny1( Z dyz®,

we have in general
¢k # djy for all k(< n).

This situation is in contrast to the case of our familiar Taylor series
expansions, in which the earlier coefficients remain unchanged.

The Weierstrass theorem requires only that the continuity of functions be
approximated. This condition is much weaker than Taylor’s theorem for
expansion in power series, in which the derivatives of all orders must exists
(i.e., it must be analytic; see Sect. 7.1.2 for the definition of analytic
functions). Furthermore, the former theorem can apply to polynomial
approximations outside the radius of convergence (see Sect. 7.4.1) of a
Taylor series.

The Weierstrass theorem may be extended to functions of more than one
variable. By a straightforward generalization of the proof (see Appendix
C), it can be shown that if a function f(x1,z2,---,2zy) is continuous
in each variable z; located within [a;,b;] (i = 1,2,---,m), it may be
approximated uniformly by the polynomials

k k
Gn(T1,22, s Tm) = E E E Cloy kg kmx trt? g,

k1=0 k2=0 km=0

The special cases of m = 2 and m = 3 are considered in Sects. 5.1.4 and
5.1.5.
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5.1.2 Existence of Complete Orthonormal sets of Polynomials

It must be emphasized that the Weierstrass theorem requires that the set
of polynomials {G,} be neither orthogonal nor complete. Nevertheless, the
theorem ensures indirectly the existence of a variety of complete orthonor-
mal sets of polynomials in terms of the L? space. The proof of their exis-
tence is based on the Gram-Schmidt orthogonalization method shown
below.

& Gram-Schmidt orthogonalization method:

Given any set of linearly independent functions {y;} normalizable on a
closed interval, it is possible to construct an orthonormal set of functions
{Q;} through the recursion formula

R I
GO =y )

with the definitions:

ui(z) = p1(x), ui(z) = pi(z) - (uk, Pit1)ur(T).
k=1

Here, (u,p;+1) means the inner product in terms of the L? space. Let us
apply the Gram-Schmidt orthogonalization process to a set of powers {z"}
that is linearly independent. We then obtain an orthonormal set {Q;} given by

i
r) = Z B o2, (5.2)
m=0

Owing to the orthogonality of the set {Q;}, the original functions 2™ are
expressed conversely by linear combinations of {Q;} such as

2™ =370 Qi (). (5.3)

=0
Substituting (5.3) into (5.1), we obtain

n

=> " alp Zm: 0™ Qi (x) (5.4)
i=0

m=0

The superscripts (n) and (m) attached to the coefficients a'" and bgm),
respectively, remind us that the values of the terms contained in the finite
sequences,
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{a(()n)’ agn)’ . 7a;’n)} and {b(()m), bgm)7 . ,bggln)} ,

depend on n or m: as n (or m) increases, all the earlier terms in the sequence
must be altered.

Now let us show the completeness of the orthonormal set {Q,,(x)} given by
(5.2), which was deduced from the orthogonalization process; this is achieved
by proving that Parseval’s identity,

Z (f,Qu)l* = I£1I°,

holds for any f € L2, or equivalently, by proving that
(f,Qn) =0 foralln < ||f|| =0. (5.5)

The sentence “||f|| = 0 implies (f,@n) = 0 for all n” immediately follows
from the Bessel inequality,

DI QP < IIfIP

k=0
To prove the converse, we note that if (f,@Q,) = 0 for all n, we have

(f,Gp) =0 for all n, (5.6)

since the (G,, are linear combinations of the @,,. In addition, we recall that
the Weierstrass theorem guarantees the uniform convergence of the sequence
(G) to f. Since uniform convergence implies a mean convergence, we obtain

If = Gnl — 0. (5.7)
From (5.6) and (5.7), it follows that
If = Gall? = (f = G, f = G) = |FI? + 1Gall* = 0,

which implies that ||f|| = 0 as well as ||G,,||*> — 0. (This is because ||f]|? is
independent of n and ||G,||? is nonnegative for all n.) As summarized, we
attain the desired conclusion (5.5), which indicates that the orthonormal set
{Q,,} is complete in terms of the L? space.

The completeness of the set {Q;} means that there exists a set of constants
{¢;} such that any function g € L? can be approximated in the mean by the
following sequence of partial sums:

= Z ciQi(x). (5.8)

=0
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The reader should appreciate a crucial difference between (5.1) and (5.8). In
the latter, the ¢; are independent of n in contrast to the case of (5.1). Thus as
we extend the sum to infinity, the approximation improves without changing
the earlier ¢;. Therefore, we may say that there exists an infinite series

lim g, (z) = ) ¢Qq(x)
i=0

n—oo

that converges to g in the mean. The expansion coefficients ¢; = (g, Q;) in the
infinite series are the Fourier coefficients we introduced in Sect. 4.3.4.

5.1.3 Legendre Polynomials

The previous discussion revealed that the orthonormal set {Q;} constructed
from the orthogonalization process based on the set of powers {x™} is com-
plete, so that the linear combination Z?:o ¢;Q; converges in the mean to
f € L?. Let us employ this result to find an explicit function form of a com-
plete orthonormal set of functions {P,} defined on the interval [—1,1]. The
first member of such a complete orthogonal set is Py(x) = 1 (For convenience,
the normalization constant is omitted temporarily). Using the Gram-Schmidt
orthogonalization process, we have

Pl(l’) =

?— (2%, Py) Py — (z*, ) P11, ,
B = e e AR @ p] 2 O Y

where we use the notation

Successive procedures give

Pi(z) = - (52° — 3z), Pu(z) = = (352" —302% +3),

0| =

Ps(z) = = (632° — 702° 4 152) ,-- - .

O — N

Eventually, we obtain the complete orthonormal set of polynomials {P,}
known as the Legendre polynomial. The = dependence of each function
is plotted in Fig. 5.1. Note that P, (z) has exactly n — 1 distinct zeros in the
open interval [—1, 1].
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A general formula for P, (z) is given by

2n — 2k)! 9
Pal@) = 52 2 D' (n( k! (n) Ik K (5:9)

where we used the Gauss notation:

n . .

— if nis even
2 b

—1 if n is odd.

Equation (5.9) is rewritten in a simpler form as

[n/2]
o 1 ( 1 d" 2n—2k
Pu(e) = 5 Z K (n— k)! dz"
_ 1 - ' 2n—2k
2mn! dx
1 dar
= (22— 1) 1
2nn! dx™ (2 ) (5.10)

The last line is known as the Rodrigues formula for Legendre polynomials.
This is a special form of the more general Rodrigues formula that is appli-
cable to any orthonormal polynomial function. The derivations of (5.9) and

Po(x)
1.0
05 P1(x)
e Po(x)
=00
Pa(x)
05
10K v v v
-1.0 —0.5 0.0 0.5 1.0

X

Fig. 5.1. Profiles of the first three terms of the Legendre polynomial P, (x)
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(5.10), as well as that of general Rodrigues formula are given in Sects. 5.2.1
and 5.2.2.

The orthogonality of the Legendre polynomials follows from the Rodrigues
formula (5.10). To see this, we denote d"/dx" by d,,, and assume that n > m.
Dropping constant factors, we have

/ P, z)de = /1 [dn(z* = 1)"] [dpn(z® — 1)) dz

-1

= [doa(@® = 1)"] [dn(® = 1)"] |1,

—/_1 o (2® = 1] [dpsr (@ — 1)™] dz,  (5.11)

where we employed integration by parts. Since
dp_1(2® —1)™ = (2? — 1) x (a polynomial),

the first term in the last line of (5.11) vanishes upon putting in the limits +1,
leaving the second term alone. Therefore, after n partial integrations, we have

1 1
/ P (2) Po(2)dz — (—1)"/ (22 — 1)"dyy s (22 — 1)™da.
-1 —1
Now, if n > m, then n +m > 2m so that d,, 1, (z?> — 1)™ = 0. Therefore,
1
/ P, (z) Py (x)dz =0 form # n.
-1
If m = n, then we have
/ Po( =0 /1 (z% — 1)"dgp (2 — 1)"dx (5.12)
T2 ), 7

where a normalization constant is explicitly attached. Since (z? — 1) is a
polynomial of degree 2n, its (2n)th derivative is just (2n)!. Hence, the integral
(5.12) reads

1 n) - (=) !
/ P, (x)%dx = W/ (z% —1)"dx = 2 . (5.13)

—1 -1 27’L+ 1

As summarized, the orthogonal property of Legendre polynomial functions
is given by

1 0 (m#n)
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Remark. Equation (5.13) follows from the identity

1 1
/ (1—2%)"de = 22"“/ t"(1—t)"dt =2"""'B(n+1,n+1)

—1 0
— 227’L+1 F(n + 1)2 _ 22n+1 (n')Q )
I'(2n+2) (2n+ 1)!

Here, we have changed the variable by setting x = 2¢ — 1 to obtain the beta
function B(z,y) and the gamma function I'(x) defined, respectively, by

1
r
= r—1 — y71 =
B(z,v) At (1—t)v~tat Tty

I'(z) :/ et dt.
0

5.1.4 Fourier Series

We next consider the application of the Weierstrass theorem to functions
of two variables. Through earlier discussions, we have the proof of the
completeness properties of the set of trigonometric functions sin nf and cosnf
(n=0,1,--+,00).

The Weierstrass theorem tells us that any function g(x,y) that is continu-
ous in both variables on finite closed intervals may be approximated uniformly
by the sequence of functions

N
gn(@y) = D all)ay™. (5.14)

n,m=0

Employ polar coordinates and restrict the domain of definition to the unit
circle z = cosf and y = sin 6 to find

N
gn(cosf,sinf) = fn(0) = Z aN) cos™ 0sin™ 6. (5.15)

n,m=0

Clearly, fn(6) should be periodic with periodicity 27. Using Euler’s equa-
tion,
¢ = cosf + isinb,

we obtain expressions for the nth powers of sin @ and cos 6:

ng_ |1 _ioy ] -n_li@_fien
cos 9—[2(6 +e )} , sin 9—|:22_(6 e )] .
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We then rewrite (5.15) in the form

M R
ful)= Y Tk e with M = 2N. (5.16)
n=—M

where we have inserted the factor (2m)'/? for later convenience and have
replaced the variable 6 by x to emphasize the generality of the result.

The superscript M attached to cslM ) in (5.16) suggests the possibility that

the values of ch) are dependent of M. However, this is not the case. In fact,
the values of the coefficients ¢,, are determined independently of M owing to
the completeness of the orthonormal set of functions

inx

€

W’ n=0,:t1,~-~,

F,(z) =
defined on the interval [—m, 7r]. The completeness of the set {F,,} allows us to
approximate an arbitrary function f in the mean by an infinite series of the
F,, and we write

- = Cn inT
flz) ~ n;m cnFn(z) = n;@ Wﬁ’ ; (5.17)
where the expansion coefficients are given by
1 " —inx
cn = (Fn, f) = @nie ) . f(z)e™ " du. (5.18)

The series (5.17) with the coefficients (5.18) is known as the trigonomet-
ric Fourier series. The completeness of the set {F,} can be verified in a
discussion similar to that in Sect. 5.1.2.

5.1.5 Spherical Harmonic Functions

We have derived the sets of Legendre polynomials and trigonometric functions
from the Weierstrass approximation theorem in one and two variables, respec-
tively. We now derive the set of spherical harmonics from a three-variable gen-
eralization. It tells us that a function g of z,y, z (i.e., 7) can be approximated
uniformly by a sequence of partial sums given by

M
M) j k.n
gu(r) = Z aékn)xjykz. (5.19)
7,k,n=0
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We may also use an alternative coordinate system such as

u=x+ iy = rsinfe'?,
v=x—iy=rsinfe

w=z=rcosb,

which yields

M
gu(r) = bl u vt (5.20)
a,B,y=0
3M .
:Zrl Z bggzel(a_m‘z’Sino‘+5960879. (5.21)
=0 (a,8,7)

In (5.21), the symbol }°, 5., indicates taking the sums over combinations
of a, 3,7 subject to the condition o + § + v = I. [Note that the sum over all
[ in effect removes the restriction on «, 3,y and gives the same results as the
original unrestricted sum in (5.20).]

We now restrict 7 to the unit sphere by requiring that || = 1, and
introduce an index m = « — 3. The expression (5.21) is then rewritten in
the form

3M
Mm(0,0) = Z Z b(()j\gw)e“ms sin®tB=1m1 g cos O sinl™! 9.
1=0 (a,3,7)

A trigonometric identity gives
sin® Mg cos” 0 = (1 — cos? 0)(@FB=1MD/2 057 g,

which is a polynomial in cos @ of maximum degree o+ + v — |m| =1 — |m|,
since a + 8 — |m| is even (see the remark below). Denoting this polynomial
by fim(cosf), we get

3M
gn (0, 0) = ZZbl(%)eim‘i’ sinl™ @ f1,,, (cos 6). (5.22)
=0 m

Remark. That o+ 3 — |m| is even is seen by observing the identity
a+f—|m|=m—|m|+26.

On the right-hand side, 203 is even and

~m| = 0 if m >0,
M=M= Zomif m <0.
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The range of the summation over m still has to be specified. Recall that all the
«, 3, are nonnegative integers subject to the condition that a+g8+~ = ¢ > 0.
This is illustrated schematically in Fig. 5.2, in which the point (a, 3,7) must
lie on the oblique face of the tetrahedron depicted in the a8y space. The line
«a — 3 =m on the v plane is shown as a solid line. In order for it to intersect
the oblique face, m must satisfy the condition that

—<m<H/.

Therefore, the sum over m in (5.22) is restricted to |m| < [, and the last
equation becomes

Z Z 0 MY, ). (5.23)

=0 m=—1

Here the sequence of functions
Yim (0, ¢) = ™ sinl™ 0 f1,., (cos 0), (5.24)

where fi,,(cos ) is a polynomial in cos § of degree [ — |m/|, provides a uniform
approximation to any continuous function defined on the unit sphere. The
functions Y}, are called spherical harmonics. Note that for a given [, there
are 21 + 1 functions Yj,,.

The orthonormality of the set {Y},,} is characterized by the relation

Fig. 5.2. The solid and dashed-dotted lines shown on the y-plane indicate the
relation a — § = m for —¢ < m < £ and m = £/, respectively. In order for the point
(o, B,7) be on the oblique face of the tetrahedron, the condition —¢ < m < ¢ should
be satisfied so that the solid line intersects the line segment AB on the ~-plane

27 ™
/ d¢/ sin 6df Y—ﬁm/ (9, d))}/lm (0, ¢) = 5ll’ 5mm’a
0 0



112 5 Orthonormal Polynomials

which determines the functions Yj,, uniquely up to a phase factor.
General equations for the Y;,, are

2041 (1 —m)!

1/2 ‘
Vin(0,0) = (1) |2 ospeme, 0

Vi, -m(0,0) = (=1)"Y,(0,6), m =0,

where

P a) = (1 - )"/ 27 ()

m

1 2m2dz+m
i1 ¢ )™

g (2 —1)", m >0, (5.25)

are called the associated Legendre functions.

Remark.

1. The normalization constant of the Yj,, follows immediately from the or-
thonormality relations for the associated Legendre functions:

1
(I+m) 2
P ()P = .
/,1 (@) B () de (l—m)!21+16”

There is, of course, a free choice of phase factor; ours is a common choice
in the physics literature. However, one must be careful because different
authors choose different phase factors for the spherical harmonics.

2. We should note that the associated Legendre functions P/™(z) are not
another orthonormal set of polynomials on [—1,1]. In fact, they are not
polynomials at all as is clearly seen in equation (5.25).

Exercises

1. Find the normalized Legendre polynomials P, (x).

Solution: Using equation (5.13), we write the normalized Legendre
polynomials P, (z) as

~ Mm+1
Po(z) =4/ "2: Po(z), n=0,1,2,---. &

2. Derive the explicit form of each function: Yyo, Y11, Y19, and Y7 5.
Solution: It follows from (5.24) that for | = m = 0, we obtain
Yoo = /1/4xm. If I = 1, then m can equal —1, 0, or +1. Recalling
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that fi,,(cos @) is a polynomial in cos 6 of degree [ — |m/|, we obtain
Yip = c1co86 + co, Y11 = c3e®sinf, Y1 1 = che @ sinf. The
constants ¢y, o, c3, ¢4 are determined by imposing orthonormality.
For instance,

2 ™ ™
/ d(b/ sin 0YY10d0 = ﬁ/ dfsin 0(cy cos O + c3)
0 0 0

= 601000 = 0,
27 T e
/ d(b/ sin 0 |Y1o|? df = 271/ df [sin B(cy cos b + c2)]
0 0 0
= 610010 = 1,

which result in ¢; = /3/(47) and co = 0. Similarly, it follows

that ¢3 = —cqy = —4/3/87. We choose the minus sign with the
convention to be adopted later. Therefore, the first few members
of the set {Y},,} are

1 3 4.

Yoo = \/;, Yii = —\/;ew5 sin 6,
3 3 .

Yio = \/7cos 0, Yi1= \/76_“Zs sinf. &
47 ’ 8

3. From the generating function of Legendre polynomials determine that

(i) Pn(1> =1, Pn(_l) = (_1)n7

@) 20 = 0 E P =0 i o=,
v [T _27(nl)?
(iii) ; 2" P, (z)dx = @t

Solution: We use the equation
o0
(1= 2ta+ 7)1 =3 " Py (a)t".
=0

(i) For x = 1, we have

1

T ;tn = ;Pn(l)t”,
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which yields P, (1) = 1. Similarly for 2 = —1, we obtain

1 oo (o)
=N =S P (-
R W Sy
n=0 n=0
which gives P,(—1) = (—1)".

(ii) For z = 0, we have

1/2 oo [eS)
1 (2n— 1) ,
S —— = )t t" = P, (0)t".
(re) =Xl =2 o
Then, we have the desired result.

(iii) We get the relation by performing an integration in parts n
times. &

4. Show that the Coulomb potential at » = 7y experienced from the unit
charge at z = a on the z-axis is given by

. 1 > o\ "™
V(rg) = Rn,o (;) P, (cosb),

where 6 is the angle between the z axis and the vector ry and a satisfies the
condition rg < a.

Solution: Using the generating function of Legendre polynomials,
we have

11 1
dmeg |[ro —a|  4meg /12 + a% — 2arg cos §

1 s o\ "™
p— — P 9 .
dmeg Zo ( a ) n(cos®)

n=

V(ro)

This series converges because ro < a and |P,(cosf) <1|. &

5.2 Classification of Orthonormal Functions

5.2.1 General Rodrigues Formula

In the previous section we saw that several kinds of orthonormal polynomi-
als can be produced through the Gram-Schmidt orthogonalization process by
starting with 1, z, 22, - - -. However, there is a more elegant approach that ap-
plies to most polynomials of interest to physicists. This section describes this
approach, which is based on the Rodrigues formula and classifies various
orthogonal polynomials in terms of the parameters involved in the formula.
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& General Rodrigues formula:

%(m)zmi—l[wu)s%n (n=01,2,--),  (5.26)

where it is assumed that

1. Q1(z) is a first-degree polynomial in z.

2. s(z) is a polynomial in z of degree no more than 2 with real roots.

3. w(x) is real, positive, and integrable in the interval [a, b] and satisfies
the boundary condition

w(a)s(a) = w(b)s(b) = 0.

Equation (5.26) under the three conditions noted above provides the sequence
of functions (Qo(z), @1 (), Q2(x),---) that forms an orthogonal set of poly-
nomials on the interval [a, b] with a weight function w(z), which can be nor-
malized by a suitable choice of constants K. For historical reasons, different
polynomial functions are normalized differently, which is why K, is introduced
here. In the meantime, we omit denoting K, without loss of generality.

& Theorem:

The function @, (x) defined by (5.26) is a polynomial in = of the nth
degree and satisfies the orthogonality relation on the interval [a,b] with
weight w(x):

b
/ OB @ =D (@< E), (5.27)

where p,,, () is an arbitrary polynomial of degree m < n.

Proof From hypothesis, we have

di:,, [w(z)s" ()] =0 (if m<n) (5.28)
z=a or b
and

where the symbol p<p)(z

') denotes an arbitrary polynomial in z of degree
< k. Then, integrating (5.27)

by parts n times, we obtain for m < n,
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[ n@Qu@talds = [ pn(e) g @) @) do

a

b dn
:/ w(@)s"(@)-Lpo(x)dz =0, (5.30)

dx™

where we used (5.26) and (5.28). Next we examine whether or not @, is a
polynomial of degree n. Set n = m and k = 0 in (5.29) to obtain

—— [w(x)s" (2)] = @n(z) = p<n) (2),

which indicates that @, (z) is a polynomial of degree no more than n. We thus
tentatively write

and would like to show that a,, 7é 0. Multiplying both parts of (5.31) by
Qn(z)w(zx) followed by integrating on [a, b] yields

b

/ab [Qn(x)}gw(x)dxz/abp <n—1)(@)Qn(z)w (m)da:+an/a 2" Q (2w (x)dx
=an /ab 2"Qn(x)w(x)dz,

where we used (5.30). This clearly proves that a,, # 0, i.e., that Q,(z) is a
polynomial of the nth degree. &

5.2.2 Classification of the Polynomials

In what follows, we classify the orthogonal polynomials that are derived from
the Rodrigues formula (5.26) the three conditions according to noted earlier.
By the condition 1 associated with (5.26), Q1(x) is a first-degree polynomial,
and we can define it as

Qi(r) = ——. (5.32)
Then the Rodrigues formula (5.26) reads

1d ds/d

ldw 2+ (ds/dz) (5.33)

w dx s
Recall that s(z) can be the zeroth-, first-, or second-degree polynomial. In
each case, we can find an appropriate weight function w(x) that satisfies the
differential equation (5.33) as well as the boundary condition 3:

w(a)s(a) = w(b)s(b) = 0. (5.34)
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Such discussions determine the explicit forms of possible functions s(x) and
w(z) under conditions 1-3 in Sect. 5.2.1 and then allow classification of all
of the orthogonal polynomials provided by the general Rodrigues formula
described below.

Hermite polynomials:

We first consider the case that s(x) is a zeroth-degree polynomial, i.e., a
constant given by

s(z) = a.
Equation (5.33) takes the form
ldw
wdr
and has the solution
22
w(x) = Aexp <_2a) with a constant A. (5.35)

The product w(z)s(x) vanishes only at = £oo, provided that o > 0. To
satisfy the conditions in (5.34), we have to set

a=—00, b=+o0.

The constants A and « affect only the multiplicative factor in front of each
polynomial. Thus, without loss of generality, we can take « = 1 and A = 1,
which yields

2
x

w=e

The complete orthonormal polynomials corresponding to this case are known
as Hermite polynomials, designated by H,(x), and satisfy the orthonormal
condition

/ e_IZHm(x)Hn(x)da: = Omn-

— 00

Laguerre polynomials:

Next we let s(x) be a polynomial of the first degree, such as
s(z) = Bz — ).
The Rodrigues formula (5.26) now becomes

1d7w x4+

wdr Bz —a)
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which has the solution
w(z) = const. x (z — a)e /P,

where

If 3> 0and v > —1, then s(z)w(z) vanishes at © = « and z = 400, and
w(x) is integrable in the interval [, +00). The simplest choice is therefore to
take a = 0 and 8 = 1, which yields

w=2z"¢ " a=0, b=+oc0.

These choices result in the Laguerre polynomials, commonly denoted by
LY (x), whose orthonormality relation is given by

/ x YLy (x)Ly (z)dr = 6y with v > —1.
0

Jacobi polynomials:

Finally, let us take
s(z) =y(@@—-a)(f-z), B>a

Here we assume that s(z) has two distinct roots. [If s(z) has a double root, the
boundary condition (5.34) cannot be satisfied, since in this case the function
s(x)w(x) cannot vanish at more than one point.] The Rodrigues formula (5.26)

now reads
ldw  z4+9(B-z)—y(@—a)

w dz Ve—a)B-2)

which has the solution

w(z) = const. x (z — a)*(8 — x)",

with
u:_a—kﬁ and Vzl—v_ «@
B o (B —a)
If p > —1 and v > —1, then s(x)w(x) vanishes at + = @ and z = 3, and w(x)
is integrable on the interval [a, §]. With the replacement

20 —a—
60—«

apart from multiplicative factors, we obtain

— x,
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w=1—-2z)"(1+2)" withv,p>-1, a=-1, b=+1.
The corresponding complete orthonormal polynomials are called the Jacobi
polynomials G (z), and satisfy the relation
1
/ (I—2)7"(1 —2) " "GEY(2)GHY (z)dx = 6y with vy p > —1.

-1

Remark. Jacobi polynomials can be divided into subcategories depending on
the values of p and v. The most common and widely used in mathematical
physics are collected in Table 5.1.

Table 5.1. Special cases of Jacobi polynomials

i v w(zx) Polynomial

A—1/2 A—1/2 (1—2) 12 Gegenbauer, C)(z). A > —1/2

0 0 1 Legendre, P, (x)
-1/2 -1/2 (1—a*)~1/2 Chebyshev of the first kind, 5, (z)
1/2 1/2 (1 —a*)1/? Chebyshev of the second kind, U, (x)

5.2.3 The Recurrence Formula
We now show that all the orthogonal polynomials derived from the Rodrigues

formula (5.26) satisfy the following relation:

#® Recurrence formula:

QnJrl(fE) = (anx + bn) Qn(m) - chnfl(x% (n = 1, 2000 ) (536)

where the constants a,, b,, and ¢, depend on the class of polynomials
considered.

Proof The only property needed for the proof of (5.36) is the orthogonality
relation:

b
/ Qn(2)p(<n) (@)w(z)dz =0, (5.37)

where the symbol p(.,)(z) denotes an arbitrary polynomial in x of degree less
than n. For convenience, we introduce the following notation:

&n = coefficient of 2™ in Q,(x),

nn = coefficient of "' in Q,(x), (5.38)

b
In:/ Q2 (z)w(x)dz. (5.39)
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It then follows that

Quir(@) — 0Qu () = 3 1 Qu(a)

&n i=0

because the left-hand side is a polynomial of degree <n; r( ") are appropriate
constants determined by the left-hand side. Multiplying both sides by wQm,
taking m equal to 0,1,2,--- ,n — 2 successively, and using the orthogonality
relation (5.37), we obtain

7“7(7;’):0 for m=0,1,2,--- ,n— 2.

Thus

Quir (@) — fg“ 2Qn(@) = M Qu(x) + 7 Quor(x),  (5.40)

which is the recurrence formula we are looking for. &

5.2.4 Coefficients of the Recurrence Formula

We now have to find the constants r(

orthogonality relation (5.37), we have

") and r 1 in (5.40). In view of the

In:/ Q% (x da;—gn/ Qn(2)x"w(x)dz. (5.41)

Multiplying (5.40) by w@,—1 and integrating, we obtain

b
I 1T7(”Ln)l = _%/ Qn(x)Qn—l(x)Iw(x)dx

:75221 gn 1/ Qn €nx w( )

gn-l—lfn 1 In
52

Therefore,
(n) _ In .gn—i-lgn—l

Tnl1 = 2

I’nfl Sn

Substituting this into (5.40) and comparing the coefficients of z™ on both
sides, yields

(5.42)

n) Tl a1l
riW = — e (5.43)
Finally, it follows from (5.40)—(5.43) that the coefficients a,,, b, and ¢,, defined
n (5.40) become
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. — 'gn—&-l
n gn )
b Sn+l (ﬂnﬂ B %)
gn €n+1 En ’
In fnJrlgn 1
= . 44
n In—l 52 (5 )

The constants &, and 7, can, in principle, be found from the Rodrigues
formula once the functions s(x) and w(x) as well as the constants K, have
been fixed. The constants I,, which determine the normalization of the
polynomials, are given by

(_1)n€nn| b n
T/a s(x)" w(x)dz.

This follows immediately from the Rodrigues formula if we integrate n times
by parts the integral

I, = / Qu(@)*w(z)dz = €, /  Qule) (@)

bx an
Kn o dx™

I, =

Although the explicit form of the coefficients given in (5.44) seems rather
complicated, the corresponding recurrence relation for a specific orthogonal
polynomial simplifies it considerably.

5.2.5 Roots of Orthogonal Polynomials

Consider the recurrence formula (5.36) in which the polynomials @, (x) are
normalized, and from (5.39) I,, =1 (n = 0,1,2,---). After some rearrange-
ment, the equation takes the form

2Qur () = fg L Q) + 2 =20 () + Bt Qur (),
where - 0
/Bn_l - fnfl B 57

The matrix form is given by
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Qo Bo &/& 0 -----n 0 Qo
Q1 /&1 B &f& - 0 Q1
. Q2 _ 0 &/&% P2 - 0 Q2
QNn-1 0 0 0 «ovvee Bn-1 QN1

0

0

0

+ ;

(En—1/&N)QN

which gives the eigenvalue equations provided that {x;} are the roots of the
polynomial equation @y (x) = 0 such that

JR(J)Z) = J)iR($i),
where the column vector R(x;) is defined by

R(%) = [Qo(xi)an(Ii)vQN—l(xi)]'

Thus, the eigenvalues of the N x N matrix J are the zeros of Qn(x). The
matrix is called the Jacobi matrix associated with the sequence {Q, (z)}.
Since J is symmetric, the eigenvalues {x;} are real. We thus have proved the
following theorem:

& Theorem:
The eigenvalues {z;} (i = 1,2,---,N) of the matrix J are the
zeros of @Qn(z). The eigenvector belonging to z; is R(z;) =

[Qo(xs), Q1(xs), QN —1(;)].

5.2.6 Differential Equations Satisfied by the Polynomials

Historically, most orthogonal polynomials were discovered as solutions of
differential equations. Here we give a single generic differential equation that
is satisfied by all the polynomials @,,.
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& Theorem:

All of the orthogonal polynomials @, (z) derived from the general Ro-
drigues formula (5.26) satisfy the differential equation

d (swdQ") = - MW@y,

dr dx

with the constant

B dQ: n—1d3s
An“”@l%* 5 4?2 )

Proof Since dQy(z)/dz is a polynomial of degree < (n — 1), it follows from
(5.29) that the function

i [0

is a polynomial of degree <mn. Thus, we can write

1ld
w dx

[s(a:)w(a:)dfxn] = —Z/\S)Qi(l‘), (5.45)

where the A() are undetermined constants. Multiplying both sides of (5.45)
by w@,, and integrating, we get

/ab Qm(lﬂ)% [s(x)w(x) djin} dr = -\, (5.46)

Here I, is an integral given by (5.39). Integrating by parts, for m < n the
left-hand side of (5.46) yields

[ @nor gt [sww ]

b dQy, dQmm,
= —/ s(x)w(x) i %dm

_ / w(e)Qu(z) leji (5<x>w($>d§xm>} "

=0.

We have used the condition that s(a)w(a) = s(b)w(b) = 0, which is assump-
tion 3 in Sect. 5.2.1. We also used the fact that @, (z) is orthogonal to any
polynomial of degree < n. Consequently, we arrive at the result
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Am =0, for m < n.

Setting
>‘$Ln) = An,
for simplicity, we can rewrite (5.45) in the form
d dQy,
e {s(m)w(x) c?x } = —w(T) A\ Qn (), (5.47)

which is the differential equation satisfied by a polynomial @, (z). The con-
stant A, can be found by setting m = n in (5.46) and integrating, as we
demonstrate later in Exercise 4.

5.2.7 Generating Functions (I)

As a matter of fact, all the orthogonal polynomials @, (z) discussed thus far
can be generated from a single function g(t,z) of two variables by repeated
differentiation with respect to ¢t. Called a generating function, it plays a
significant role in many areas of mathematics. Here we study the essence of
generating functions together with several examples by which we can derive
specific orthogonal polynomials.

A formal definition of generating functions is given below.

& Generating function:

Assume a (finite or infinite) convergent power series
~(t) = Z fut®.
k

The ~(t) is called a generating function for the sequence of coefficients

f17f2a"' 7f7l7"'

Clearly, all the coefficients f,, are obtained from differentiating ~(¢) as given
by

_ 1d"y(@)
o=

For orthogonal polynomials, generating functions are assumed to take the
form

glt,x) = ApQu(2)t", (5.48)
n=0

where @, (x) is an orthogonal polynomial associated with g(¢, x), and the A,
are appropriate constants. The explicit form of g(¢, x) can often be derived us-
ing the Rodrigues formula and Cauchy’s integral formula (see Sect. 7.3.1).
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Remember that the latter formula determines an nth-order derivative of a
function f(z) as

L / 1(Q)d¢

dz" 21 Jo (¢ — z)n 1’

where f(z) is analytic within the closed contour C. (See Sect. 7.1.2 for a
definition of analytic functions.) Applying this to the Rodrigues formula
for, say, Hermite polynomials H,,(z), we obtain

2,5 d" 2 2,5 ! 6742/2d€
H, :71“/27795/2171711/27%7'
(z) = (=1)" dzn € (=1)" 27t Jo (¢ — x)ntt

We then try to sum the series as

i H’ﬂ(m)tn B ew2/2 ‘7{ 6_42/2 i (_1)ntn dC— 612/2% e—CZ/QdC
— nl 2w Jo (¢ — x)ntl Co2mi Jol—att

n=0

where we require that the point z —t be inside the contour. Finally we evaluate
the above integral and find

’I’L

@) i

Comparing this last equation with (5.48), we see that ¢'*=(**/2) is the gener-
ating function associated with Hermite polynomials H,, (z). Similarly, we can
derive the generating function for Laguerre polynomials as

7tz/ (1—t)

(1 —t)l+e ZL&

5.2.8 Generating Functions (II)

There is an alternative way to determine a generating function, which is based
on the recurrence formula for a particular polynomial. To see this, we try to
find the generating function of the Legendre polynomials that satisfies the
following recursion formula:

(n+1)Poyi(x) — 2n+ D)aP,(x) + nPp_1(z) =0,

with Py(z) = 1, Pi(z) = «, and for convenience we set P_;(z) = 0. We seek
an expression in closed form for

x) = Z P, (x)t"
n=0
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First we note that

o0

inP = (n 4 1) Py ()t

n=0 n=0

= Z [(2n+ 1)xPy(x) — nP,_1(z)]t".

By straightforward rearrangement we find that

9 _ =xg(t,x) + tha

dg
)

ot’

which leads to the partial differential equation

199 x—t
got 1 —2tx+1t2

Coupled with the initial condition ¢(0,z) = 1 we finally have

\/172t93+t2 ZP

Generating functions for other orthogonal polynomials are given in

Appendix D.

Exercises

1. Find the recurrence formula for normalized polynomials Qn(aj)
Solution: When the polynomials are normalized, we have I,, =

0,1,2,---) from (5.39). The recurrence formula (5.36) is

I Qui(a).

Up—1

Qn-i-l(x) = (an® + by) Qn(x) -

2. Assume that a sequence of orthogonal polynomials satisfies

Qni1(z) =[(n+ 1Dz +1]Qn(z) —3(n+1)Qn-1(x).

&

1 (n=

Find the normalized constants for @, (z) defined by Q,(z) = AQ,(x),

where Q,, () are normalized polynomials.
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Solution: We denote the normalized polynomials as Qn(a:) =
AQn(z), where the constants A, (n =0,1,2,---) are to be found.
Substituting @, (z) into the given formula, we have

AK? [(n+ 1)+ 1] On() — 3(n + )20,y (a).

Qn+1(x) = \

Comparing this with the normalized recurrence formula from
Exercise 1, we have the relation (3\,,)/ -1 = A\n—1/(n\,), which
yields A, = A1/ v/3n. This relation gives the normalization
constants of the form

An = ()X, &

3n/2
3. Find the recurrence formula for Hermite and Legendre polynomials.
Solution: For Hermite and Legendre polynomials, (5.36) reads
Hp1(z) =22H,(z) — 2nH, 1 (x) (5.49)
and
(n+1)Poyi(x) = 2n + DRy (x) — nPh_1(z), (5.50)

respectively. See Appendix D for the recurrence relations associ-
ated with the other polynomials we have discussed. &

4. Determine the constants A, given in (5.47).
Solution: Setting m = n on the left-hand side of (5.46), we obtain

/Qn dd{ )(x)dii"}dx (5.51)
/ Qun(z [ dinst(x)w(z)dQQ"}dz

dx?
dQn d’Qn

= [ [ o T8 w652

Here we used the relation d(sw)/dx = wK;Q; [set n = 1 in the
general Rodrigues formula (5.26).] The orthogonality of @, (z)
means that only the nth power of x in the square brackets con-
tributes to the integral in the last line of (5.52). [See (5.30) for
details of the orthogonal property of @, (z).] We then set up the
following expressions:
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s(z) = ax® + bz + ¢,
Qn(l') =&na" + gnflxnil + e
Q1(z) =m + o,

which result in

KlQldf—; = Kymné&,a™ + (const.) x 2™ 4.
and
*Qn
dx?
Thus the relevant terms in the square brackets in the last line in
(5.52) become

5 =an(n — 1)&,2™ + (const.) x "~ H - .

dQl 1 d82 n

where we used 1, = dQ; /dx and a = (1/2)(ds*/dz?), and we get

[%@ihmmﬁﬂm

d d2 b
_ [nKljil + g(n - 1)d:;} / w(2)Qum () (Enz™) dz
B dQ: n—1d%s
"(Klm:+ 5 ¢ﬂ>%'

Comparing this with (5.46), gives us
d n—1d%s
@1 ) &

dx + 2 dx?

)\n =N (Kl

5.3 Chebyshev Polynomials

5.3.1 Minimax Property

Thus far we have seen that every real function f(z) defined in a certain interval
(finite or infinite) can be approximated in the mean by appropriate orthogonal
polynomial {Q,(x)} as

n
f@) =) eiQi(x). (5.53)
i=0

The coefficients ¢; are determined formally by using the orthogonality of the
polynomials in question. The striking advantage of such polynomial approxi-
mations is that an improvement in the approximation through addition of an
extra term ¢,+1@p+1(x) does not affect the previously obtained coefficients,
C05C15° " ,Cn-
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In principle, any polynomial that we discussed in Sect. 5.2 can be approx-
imated using (5.53). From the point of view of numerical analysis, however,
the Chebyshev polynomial {T,,(x)} is the best choice, primarily because at
any point z within the domain [—1,1], the function T, (x) has the smallest
maximum deviation from the true function f(x) to be approximated. This
property, which is unique to Chebyshev polynomials, is known as the mini-
max property. In general, polynomials endowed with the minimax property
are very difficult to find, but fortunately, the Chebyshev polynomials fall into
this category an, moreover, are easy to compute.

To show the minimax property of Chebyshev polynomials, we have to be
aware of two of their other properties. The first is a concise formula for T, ()
that is an alternative to those based on the Rodrigues formula.

& Concise formula for Chebyshev polynomials:

T, (z) = cos (ncos™ ' z) (n=0,1,---). (5.54)

The derivation of (5.54) requires some lengthy calculations, so we put it in
the next subsection (see Sect. 5.3.2). Equation (5.54) implies that each T,,(z)
has n zeros in the interval [—1, 1], which are located at the points

2 = cos {Z (k—;)] (k=1,2,--- n). (5.55)

In this same interval, there are n + 1 extrema (maxima and minima), located
at

T = cos (%k) (k=0,1,---,n).

Note that T;,(x) = 1 at all of the maxima, whereas T;,(x) = —1 at all of the
minima. This feature of T, is exactly what makes the Chebyshev polynomials
so useful in polynomial approximation of functions

Remark. Equation (5.54) combined with trigonometric identities can yield
explicit expressions for T),(x):

TO('T) :17 Tl('r) =z, TQ(J:) :2‘1:2_17 T3($) :4.’133—337,"' )
and more generally,
Tot1(x) = 22T, (x) — Thoa(z) (n>1).

The last expression is a special case of the general recurrence formula (5.40)
derived in Sect. 5.2.3.

The second property of Chebyshev polynomials to be noted is the discrete
orthogonality relation described below. (The proof is given in Sect. 5.3.3.)
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& Discrete orthogonal relation:

Itz (k=1,--- ,n) are the m zeros of T,,(x) given by (5.55) and i, j < n,

then
n 0, i#j,
> Tilwn)Tilax) = § n/2,i=3 #0, (5.56)
k=1 n, i=4=0.

From (5.54) and (5.56), we obtain the following theorem:

& Theorem:

Suppose f(z) to be an arbitrary function in the interval [—1,1] and
define ¢; (j =1,---,n) by

€= 2 En f(@K)Tj-1(zk), (5.57)
N
k=1

where xy, is the kth zero of T),(z) given by (5.55). We then have

n
1

= T — — f lz=ux. .
f(z) ;ck -1 () 5 forallz=u (5.58)

What is remarkable is the fact that for © = xy, the finite sum in (5.58) is
equal to f(z) exactly. For x # xy, the sum in (5.58) just approzimates f(x);
nevertheless the error can be reduced by increasing the degree n of the sum.
Moreover, for practical use, we can truncate the sum in (5.58) to a much
lower degree, for even if we do so, the approximation (5.58) is sufficiently
accurate over the whole interval [—1, 1], not only at the zeros of T}, (). This is
in contrast to the case of approximations based on other polynomials, where
the degree of summation n should be taken as large as possible to obtain
high accuracy. In fact, this truncation capability is the reason Chebyshev
polynomial expansion is far better than the other choices.

To examine the above statement, let us suppose that n is so large that
(5.58) is virtually a perfect approximation of f(z). We then consider the
truncated approximation

m c '
f(z) ~ ;cka,l(m) - 51 with m < n, (5.59)

where the coefficients ¢, are given in (5.57). The difference between (5.58)
and (5.59) is given by
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n

> alioa (), (5.60)

k=m+1

which can be no larger than the sum of the neglected ¢;’s as the T, (x)’s are
all bounded between £1.

Now we consider the magnitude of the sum (5.60). We know that in general
the c¢;’s decrease rapidly with k, which follows intuitively from the definition
(5.57). Hence, the magnitude of (5.60) is dominated by the term ¢, 1T (z),
which is much less than unity for all € [—1, 1]. In addition, ¢;4+1T(2) is an
oscillatory function with m + 1 equal extrema distributed almost uniformly
over the interval [—1, 1]. These two features of the dominant term ¢, 1T, ()
result in smooth spreading out of the error of the approximation (5.59). This
context implies that the Chebyshev approximation (5.59) is very nearly the
same as the minimax polynomial that has the smallest maximum deviation
from the true function f(z).

5.3.2 A Concise Representation

The aim here is to derive the alternative representation of Chebyshev poly-
nomials given in (5.54):

Ty (z) = cos [ncos™ ' (z)] .

We know that Chebyshev polynomials satisfy the relation

2 d
(1 — $2)@Tn(l’) — z@Tn(z) + nzTn(a:) = O,
which can be rewritten in the form
d d n?
— 1—22—T, —T, =0. 5.61
& (VTP L nw) + ) (.61

We now apply the following lemma:

& Lemma:

Let p(z) and g(x) be two positive, continuously differentiable functions
that satisfy the differential equation
¢ 1p@) Ly(a) | +a(a)y(a) = 0 (5.62)
dr p d.ry a\r)y =Uu. .

If the product p(x)q(z) is nonincreasing (or nondecreasing), then the rela-
tive maxima of [y(x)]? form a nondecreasing (nonincreasing) set.
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(The proof of this lemma is outlined in Exercise 1.) We can see that if

2

p(r)=v1—22 and q(z)= \/%,

(5.61) corresponds to (5.62), which implies that the product pq is constant.
Thus, according to the lemma, all relative maxima of 72(x) must assume the
same value.

Now we seek a polynomial T}, (z) of degree n that satisfies the condition

T?(x) =1 whenever T/ (x) = 0.

That is, T2(z) = 1 at all x where T2(z) has a relative maximum equal to 1.
Clearly at these points, both T2(x) — 1 and [T7,(z)]* have double zeros. Then
the function

T2(z) -1

2
[T, (x)]

is a rational function and all the zeros of the denominator also occur in the
numerator. Is we compare the degree of the polynomials in the denominator
and in the numerator, it follows that (5.63) is a quadratic, and without loss
of generality we have

(5.63)

m:aﬁ—l 5.64
T (@) ( ). (5.64)

The constant o can be determined by dividing both sides by z? and letting
x approach infinity. Then, inserting a polynomial of degree n for T,,(z), we
obtain

1
g =@ 8o that T, (z) = cos [ncos 'z +¢],

which yields

a2 —1 (dT,\*

Equation (5.65) is a differential equation for T (x) that determines the
explicit form of our desired T),(z). To solve it, we set

T,.(z) =cosf, x=coso,
where 6 and ¢ are functions of x. We then have
T2(z) — 1 = —sin?6
and

dr  singdo’

dTn(x)<d >d¢)sin0d9

T — cos
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Substituting these in (5.64) yields
do\?
(dgb) =n? sothat 6= +no+c,

and we get
T (z) = cos (ncos 'z +c) .

To determine ¢, we note that
T2(4+1) = 1 = cos(c).
Hence, ¢ = 0 and we eventually obtain

T, (z) = cos (ncos ' z) . (5.66)

5.3.3 Discrete Orthogonality Relation

We close this section by proving the discrete orthogonality relation (5.56) for
Chebyshev polynomials.

Proof (of the discrete orthogonality relation): Let xp (kK =
1,2,-+-,n) be the n zeros of T, (x), which is given by

S L

Then the value of Ty(z) at = x, in which ¢ < n is assumed, reads

To(xr) = cos [(cos™ (z1,)] = cos W (k - ;)} .

Using the trigonometric identity, we have for ¢, m < n,

Te(l‘k)Tm(Ik)
1 [w(f +m)
5 COS 72’”

m(f —m)
2n

(2h — 1)] + % cos [ (2k — 1)] . (5.67)

If £ = m = 0, this equals 1 so that we obtain

ZTZ (1) :i = (5.68)
k=

Otherwise, if £ = m # 0, the second term in the last line of (5.67)
equals 1/2 and we have

> Ty(ar)?
k=1

7+ Zcos{ 2k—1)]

n sin(2(m)  n
T2 + 4sin(ln/n) 2’ (569)
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where we used the equation (see Exercise 2)

sin 2nx

z": cos(2k — 1)z = (for = #0).
k=1

2sinx

In a similar manner, for the case ¢ # m we find that
> Ty(aw) T (k) = 0. (5.70)
k=1

Equations (5.68), (5.69), and (5.70) together are identical to the de-
sired result given in (5.56). &

Exercises
1. Prove the lemma associated with the differential equation (5.62).

Solution: The proof is based on the nondecreasing property of the
function defined by

gy P @)

in which the functions y(z), p(z), and ¢(z) are assumed to satisfy
the differential equation (5.62). The nondecreasing property of
f(zx) is verified by seeing its derivative:

: co2y o (AN e (00)
fi(z) =2yy" + 0 (py')" + <pq> (ry") (p0)? (ry')*,
where we used the condition (5.62). From hypothesis, pg is
nonincreasing, which implies (pg)’ < 0. Hence, it is readily seen

that f* >0, i.e., that f is nondecreasing.

Now we realize that, 3’ must vanish wherever y(x)? has a rel-
ative maximum so that f(z) = y2. Suppose that z; and zy are
two successive zeros of ¢/, such that x1 < 3. Since f(x) is nonde-
creasing, we have f(xq) > f(x1), or equivalently, y?(z2) > y*(x1),
which means that the relative maxima of 3? form a nondecreasing
set. This completes the proof of the lemma. &

= sin 2nx
2. Prove that I;COS(Q/C — 1z = Y (for = #0).

Solution: This equation is obtained by considering the sum

N o SN 1 2N+

E ez(2k71)m — ¢ T E e2zkz — e i |: 4 ~1
1 — e2ix
k=1 k=1

i(N—-1)x Mn( + )JT _eTim,

= e -
s x
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Taking the real part of both sides yields

N
in(N +1

E cos(2k — 1)z = cos(N — 1)x - M —cosx

— sin

_ sin2Nx +sin2x  2sinx cosx _ sin2Nx &

2sinx 2sinx 2sinx

3. Derive the formula for Chebyshev polynomials:

1—¢2

o = ) +2 ) @)™,
m=1

where |t| < 1. Then, using this equation, prove that

27
0 2mt™
/ cos d0 — T 7
o 1—2tcosf+t2 1—¢2

where n > 0.

Solution: It follows that

1+ Z 2t™ cosmf = —1 + 2Re Z emom — 1 4 2Rel/(1 — te'?)

m=1 m=0

=1 —t3/(1 -2tz +t?),

which the desired result. The next equation is found in the Fourier
cosine series, where the coefficients can be obtained from

b 1/% Lt 06 — 2", &
= — —————— cosnbdf = 2t".
mJo 1—2tx+t?

5.4 Applications in Physics and Engineering

5.4.1 Quantum-Mechanical State in an Harmonic Potential

We now consider the application of Hermite polynomials H,(z) to physical
systems in the theory of quantum mechanics. We know that H, (x) satisfies
the following second-order differential equation:

H!!(z) — xH] (z) + nH,(x) = 0.
Let us introduce the related function

Up(z) = e /*H, (). (5.71)
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A simple calculation shows that

1 z?
Ul(x) + <n +t3- 4> Upn(x) = 0. (5.72)
This equation is similar in form to the Schrédinger equation for a quantum
particle whose motion is confined to an harmonic potential well. In fact, the
Schrédinger equation is given by

2
w@)+ (55 ) v =0 (5.73)
where ¥ () is the quantum wave function whose squared value at the position
x = a, namely, |¢)(a)|?, represents the probability density of the quantum
particle being observed at z = a. The similarity between (5.72) and (5.73)
implies that the product of the function defined by (5.71), i.e., H,(x), and
e~7"/4 behaves as a wave function that describes the quantum particle in the
potential well.
However, it should be noted that solutions of (5.73) do not always satisfy
the condition -
/ b (x) 2 < oo, (5.74)
which must be satisfied for the solutions to be physically meaningful. By
comparing (5.73) with (5.72), we see that whenever

E=E,=2n+1, (5.75)

we have

U (x) = cnesz/QHn (\/ir) ,

which clearly satisfies the condition (5.74) if the constants ¢, are chosen ap-
propriately. Furthermore, the uniqueness theorem for solutions of ordinary
differential equations (see Sect. 15.2.4) guarantees that the values of E given
in (5.75) are the only ones for which (5.73) has solutions satisfying (5.75).
These specific values of E are called the eigenenergies of the system, and
the corresponding solutions psi,(z) are called eigenfunctions.

5.4.2 Electrostatic potential generated by a multipole

Next, we briefly discuss the use of Legendre polynomials in describing
the electrostatic potential field generated by a multipole. For simplicity, we
first consider an electric dipole, i.e., a pair of positive and negative charges
separated by an infinitesimal distance h. We choose our coordinate system
such that both charges are located on the x-axis with the negative charge at
the origin. The magnitude of the charges is taken to be £(1/h). Then, the
electrostatic potential field @5(P) with respect to a point P on the sphere
2 + y2 +22=7r2is represented as
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1 1 1
lim — _
hH0h<\/(xh)2+y2+z2 \/x2+y2+22>

_9(1y __ =
T ox\r) 3

Therefore, when r = 1, we have
¢2(P)|r:1 = —r = —Pl(l') . 1!7

where P, (z) is a Legendre polynomial.

Similar descriptions can be presented for high-degree multipoles. The po-
tential @4(P) of a quadrupole is determined as follows: Consider a double
negative charge —(2/h?) located at the origin and two positive charges 1/h?
located at the points (z,y,z) = (%£h,0,0). Then, the associated potential
@4 (P) at a point on a sphere of radius r is given by

B4(P) = lim — ! 2 + !

4 = 5 -

=0 B2\ @+ h)Z+y?+ 22 V42422 @) 4y 2
_ 9 (1) o3
T2 \r) ro

so for r =1,
D4(P)|,_, = =1+ 32 = Py(z) - 2\.

Similarly, for an octapole, we get

0% /1
D5(P)|,—; = 73 (T>

and in general

ot /1
D20 (P)],—, = I <r>

The final result tells us that the potential of a 2"-pole is described by the
product of the Legendre polynomial P, (x) and the factor (—1)™-n!. By solving
the previous equation for P,(z), we obtain the following expression for the
nth Legendre polynomial:

o= 2 ()

= —152% + 92 = —P3(x) - 3!,

r=1

= (=1)"P,(x) - nl

r=1

n! ox™ \r

r=1
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Lebesgue Integrals

Abstract The concept of “measure” (Sect. 6.1.2) is important for an understanding
of the theory of the Lebesgue integral. A measure is a generalization of the concept of
length that allows us to quantify the length of a set that is composed of, for instance,
an infinite number of infinitesimal points with a highly discontinuous distribution.
Thus, the Lebesgue integral is an effective tool for integrating highly discontinuous
functions that cannot be integrated using conventional Riemann integrals.

6.1 Measure and Summability

6.1.1 Riemann Integral Revisited

It is certain that the Riemann integral is adequate for practical applications
to most problems in physics and engineering, as the functions that we usually
encounter are continuous (piecewise, at least) so that they are integrable by
the Riemann procedure. In advanced subjects in mathematical physics, how-
ever, we come to a class of highly irreqular functions where the concept of an
ordinary Riemann integral is not applicable. In order to treat such functions,
we have to employ another, more flexible integral than the Riemann integral.
In this chapter, we present a concise description of the Lebesgue integral.
The Lebesgue integral not only overcomes many of the difficulties inherent in
the use of the Riemann integral, but its study has also generated new concepts
and techniques that are extremely valuable in practical problems in modern
physics and engineering.

At first, the cultivation of an intuitive feeling for the Lebesgue integral
as an adjunct to formal manipulations and calculations is important, and we
achieve this by comparing it with the Riemann integral. When defining the
Riemann integral of a function f(z) on an interval I = [a,b], we divide the
entire interval [a, b] into small subintervals Az, = [z, zx41] such that

a=21<xy<- - <Tpspp =b.
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The finite set {x;} of numbers is called a partition P of the interval I. Using
this notation P, let us define, e.g., the sums

Sp(f) = ZMk(xk—H —xy), sp(f)= ka(ka —xp),
k=1 k=1
where M and my, are the supremum and infimum of f(z) on the interval
Az, = [Tk, Trp41], respectively, given by
M, = sup f(z), mp= inf f(z). (6.1)
rEAxy TEAT
Evidently, the relation Sp(f) > sp(f) holds if the function f(z) is bounded
on the interval I = [a,b]. We take the limit inferior (or limit superior) of the
sums,

S(f) =liminf Sp, s(f) =limsupsp, (6.2)

n—oo
where all possible choices of the partition P are taken into account. The S(f)
and s(f) are called the upper and lower Riemann—Darboux integrals of
f over I, respectively. If the relation holds, i.e., if

S(f) =s(f) = 4,
the common value A is called the Riemann integral and the function f(x)
is called Riemann integrable such that

A= / " ().

We note without proof that the following conditions ensure the existence of
the Riemann integral of a function f(x).

1. f(x) is continuous in I = [a, b].

2. f(z) has only a finite number of discontinuities in I = [a, b].

On the other hand, when the function f(z) exhibits too many points of
discontinuity, the above definition is of no use in forming the integral. An
illustrative example is given below.

Ezamples Assume an enumeration {z,} (n = 1,2,--+) of the rational numbers
between 0 and 1 and let

_ 1 (x:ZhZQv"'azn)
fla) = {0 otherwise.

That is, the function f(z) has the value unity if « is rational and the value
zero if x is irrational. In any subdivision of the interval Axy C [0,1],

mk:(), Mkil,
and
SPZO, Sp:1.

Therefore, the upper and lower Darboux integrals are 1 and 0, respectively,
whence f(x) has no Riemann integral.
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6.1.2 Measure

The shortcoming of the Riemann procedure demonstrated above can be suc-
cessfully overcome by employing Lebesgue’s procedure. The latter requires a
systematic way of assigning a measure u(X;) to each subset of points X;.
In the remainder of this section, we learn about the basic properties of mea-
sure and its relevant materials, which serve as preliminaries to introduce the
precise definition of Lebesgue integrals given in Sect. 6.2.

The measure for a subset of points is a generalization of the concepts of the
length, area, and volume. Intuitively, it follows that the length of an interval
[a,b] is b — a. Similarly, if we have two disjoint intervals [ay, b1] and [az, ba],
it is natural to interpret the length of the set consisting of these two intervals
as the sum (b; — a1) + (b2 — a2). However, the ‘length’ of a set of points
of rational (or irrational) numbers on the line is not obvious. This context
requires a rigorous mathematical definition of a measure of a point set, as
shown below.

& Measure of a set of points:
A measure p(X) defined on a set of points X is a function with the
following two properties:
1. If the set X is empty or consists of a single point, p(X) = 0; otherwise,
w(X) > 0.
2. The measure of the sum of two nonoverlapping sets is equal to the
sum of the measures of these sets expressed by

/JJ(Xl 4 XQ) = ,U(Xl) aF /.L(XQ) for X1 n XQ =0. (63)

In the above statement, X; + X5 denotes the set containing both elements of
X1 and X3, wherein each element is counted only once. If X; and X5 overlap,
(6.3) is replaced by

(X1 + Xo) = p(Xq) + p(X2) — p(X1 N Xo)

so that the points common to X; and X5 will be counted only once.

Various kinds of measures have been thus far introduced in mathematics.
Among them, is the following important example of measure that plays a
central role in the subsequent discussions. Consider a monotonic increasing
function a(z) and let I be an interval (open or closed) with endpoints a and b.
We define the a-measure of I denoted by pi, (), which takes different values
depending on the types of endpoints a and b as shown below.

# o-measure of intervals:
a-measure of intervals are defined by
o 4o ([a,b])=a")—ala”) for the closed interval [a,b],
o 4o ((a,b)=a")—ala™) for the semiclosed interval (a, b],
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(a~) for the semiclosed interval [a, b),
(a™) for the open interval (a,b),
) and aa®) = lir% ala+e).

E—

«
(0%

) )
* o (a,b)1= a(b™) -

o=
B
L
IS
|
™

By definition, the open interval (a,a) is an empty set, so that p4((a,a)) =0
for any a € R. The other cases of intervals (a,a] and [a,a) are also empty
sets. Note that ps(I) > 0 since a(x) is a monotonically increasing function.

Ezamples Let a(z) be the monotonically increasing function (see Fig. 6.1)

0, <1,
alz)=<X 3, xz=1, (6.4)
1, x>1.

‘We then have

1a(0,1)) = a(17) —a(07) = 0-0 = 0

and
pa(0,1]) = a(1*) —a(07) = 1-0 =1
Similarly,
pa([1,2]) = pa([1,2)) = 2-0 = 2,
pa( (1, pa( (1, =2-1=1
a(x)
1 o——
172 [}
0 1 !

Fig. 6.1. The function a(x) defined in (6.4)

6.1.3 The Probability Measure

The significance of measure is understood by illustrating the probability the-
ory as an example. Probability theory deals with statistical properties of a
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random variable x associated with an event occurring sequentially or simul-
taneously, where it is assumed that the average of x approaches a constant
value as the number of observations increases.
Given a random variable z, its expected (or mean) value is defined by
the integral
o0
E{z} :/ xp(z)de, (6.5)
—00
where p(z) > 0 is the probability density function of the random variable
x defined by
dP(x)
p(z) = ——,
x

with the probability distribution function P(x). The function P(z) de-
scribes the probability that the event labeled = occurs. It follows intuitively
that

P{z; <z <} = /1'2 p(x)dx (6.6)
and -
/_ p(x)dx = 1.

Ezamples For a discrete random variable {z;}, the integral of (6.5) can be
written as a sum:
E{z} =) zip.

In an experiment with dice, e.g., the probability of each event is given by
1
b1 =p2="'=]96=67
which yields

: 7
E{z;} = inpi =3
i=1

In probability theory, the probability distribution function P(z) plays the
role of measure. Assume a set of continuous real numbers, X = {z < a} and
let the function a(a) be the probability that x has a value no greater than a.
The function a(a) then reads

ala) = P(x < a), (6.7)

where a(—oco™) = 0 and a(co™) = 1. Note that a(a) is a monotonically
increasing function. We have as well

Plzy <z <9} = axe) — alz),
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since
P{z <x9} =P{x <ax1} + P{z1 <z < x2}.

Therefore, we see that the probability distribution function P(x € I) corre-
sponds to the a-measure for any interval I, as expressed by

pall) = Pla € 1),
which behaves as 0 < p4(I) < 1 for any I.

Remark. The mean value (6.5) of a random variable x can be interpreted as a
Riemann—Stieltjes integral, rather than as an ordinary Riemann integral.
To see this, we observe that the Riemann integral (6.5) can be expressed by
the Riemann sum as

/OO op(x)dr = Z &p(&r) (Tht1 — Tn), (6.8)

- k=—o00

where & is any point on Axy. Since p(ag)(xp+1 —xx) = AP{ap < < xp41}
from (6.46), the mean value is written in the form

E{z} = /OO xdP = /00 xdp(z), (6.9)

— 00 —00

which is called the Riemann—Stieltjes integral of « with respect to u(z).

6.1.4 Support and Area of a Step Function

What follows is an important concept that we use together with the concept
of measure to introduce the definition of the Lebesgue integral. Let I; be any
interval, and suppose that the step function 0(x) given by

0(‘%)7 Ci, xej’h i:1723"'7n7
10, otherwise,

where a set {¢1,c2, -, ¢, } consists of finite and real numbers. We see that
0 is constant on each interval I;, and zero elsewhere. We now introduce the
following concept:

& Support of a step function:
The disjoint set S = [ Ul,U---UI, C I on which 6 is nonzero is called
the support of 6(z).
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An example of the support 0(x) is depicted in Fig. 6.2. When the support
of a step function 6 has a finite total length, we associate it with the area
A(0) between the graph of 6 and the x-axis, with the usual rule that areas
below the z-axis have a negative sign. We refer to A(6) as the area under
the graph of 6.

0(x)

C3 HD

N o————o0

ol e—o |

& 0 ;

sl L —

0" —> S— .
I L, L Iy Is

Fig. 6.2. The disjoint set S = I; U I, U--- that serves as the support of 6(x)

Concepts such as support and area can apply to a linear combination of
step functions. Suppose that 01,6,,---,0, are step functions on the same
interval I, all with supports of finite total length, and that ay,as,--- ,a, are
finite real numbers. Then, the function O(z) defined by

O(z) = Zajﬂj(x) forz el
j=1

is also a step function on I. The support of ©(x) has a finite length and the
area under the graph of ©(z) is given by

AO) = a;A9)).
j=1

Ezamples Let 61,05 : [0,3) — R be defined by

_J1 for0,2), _
On(z) = {2 for [2.3), (@) _{ 1 for (1,3). (6.10)
Let © = 267 — 5. Then
3 for [0,1],
O(x)=<1 for(1,2), (6.11)
3 for [2,3)

These are plotted in Fig. 6.3. Clearly © is a step function. Note also that the
areas are

Afy) =2(1)+1(2) =4, A(f) = —1(1) +2(1) =1,
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and
AO)=13)+1(1)+ 1(3) = =2A(6,) — A(62).

3 31—0 —-o

Fig. 6.3. The functions 6, (z), 62(z), ©(x) given in (6.10) and (6.11), respectively

6.1.5 a-Summability

Now, we combine the concepts of a-measure and support of a step function.
Let a(x) be a monotonically increasing function, I be any interval, and 6(x)
be a step function. We further assume that the support of # is a simple set,
i.e., the union of a finite collection of disjoint intervals. For example, the set
S = Uj_; I is a simple set if I1, 5, , I,, are disjoint intervals. Then, the
a-measure of S is given by

ha(8) = 3 a1y,

k=1

Observe that the value of p,(S) is independent of the way in which the set S
is subdivided. Note also that

(1) pa(S) > 0 for any simple set S, and
(ii) if S and T are simple sets such that S C T, then 14(S) < pa(T).
We are now ready to present the following statement:
& o-summability:

A step function 6(z) is a-summable if the support of § has a finite
a-measure with respect to a given monotonically increasing function «(z).



6.1 Measure and Summability 147

Given an a-summable step function f(x), we associate it with a real number
A, (0) defined by

Aa(0) = crpia(Tr), (6.12)
k=1

where ¢ is the amplitude of step function 0(x) for x € Ij. In general, A,(6)
can be thought of as a generalized area. For example, when setting «(z) = x,
the measure p,(I) turns out to be just the ordinary length of the interval
Ii, then A,(0) is just the area A(6) under the graph of §; as defined in
Sect. 6.1.4. However, if a(x) has a more complicated function form, we get a
different value of A, () from the above since in that case a length along the
x-axis should be measured by the a-measure rather than by ordinary length.
An example of an actual calculation of A, (0) is provided in Exercise 2.

Remark. We shall see in Sect. 6.2.2 that the Lebesgue integral is defined by
the limit n — oo of the sum in (6.12).

6.1.6 Properties of a-summable functions

We list some basic properties of a-summable step functions without proof.

e If A(x) is a nonnegative a-summable step function with respect to a given
a(z), then A, (0) > 0 and A,(0) = 0.

e If #; and Ay are a-summable step functions on the same interval I such
that 91 S 92 on I, then Aa(ﬂl) S Aa(eg)

e Let aset {0,,} be a-summable step functions on the same interval I, and
let {a.,} be finite real numbers. By defining § : I — R as

b(x) = a;8;(x)
j=1
for all x € T ( is also an a-summable step function on I), we have

An(0) = Z%Aa(gj)~

Exercises

1. Assume a monotonically increasing function a(z) defined by

0, x € (—o0,1),
22 -2 +2, z€ll,2),
o(z) = 3 m:[2 :

T+ 2, x € (2,00).
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Calculate A, () for each of the two step functions:

and

we have
Ay (61) = (—1)0+2(5) = 10.

For 05, on the other hand, we have a different result since
pa([0,1]) = a(1*) —a(07) = 1-0 =1,
pa( (1,3]) =a(B3t) —a(1™)=5-1=4,
which yields
An(02) = (1)1 +2(4) =T.

It is noteworthy that the values of A, (6;) and A, (0s) are different,
although the area A(f) for them is the same. The difference comes
from the fact that a has a discontinuity at the single point where
01 and 05 have different values. &

2. Evaluate A, () of the step function:

[2, xe€(—00,0],
G(x){l’ x € (0, 00),

which is associated with the a-measure:

0, z<0,
a(z) = %, =0,
1, x>0.

Solution: Since

pal(=50,0)) = a(0") — a(-c") = £ ~0= 1
1o ((0,00)) = a(c0™) — a(0+) —1— % _

)

N | =
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we have

3. Show that the function

f(z) = lim lim (cos2wmlz)",

n—oo Mm—00

called Dirichlet’s function, takes the form

@) = 1 for all rational numbers x,
770 otherwise.

Solution: When z is a rational number, it is expressed by a
fraction p/q with relatively prime integers p and ¢. Hence, for
sufficiently large m, the product m!x becomes an integer since

mlz=m-(m—-1)---(¢g+1)-p-(g—1)---2-1.

Thus we have cos 2rm!z = 1. Otherwise, if z is an irrational num-
ber, mlx is also an irrational for any m, so that | cos2mmlz| < 1.
As a result, we obtain

1: z is a rational,

n—00 M—00 0 : z is an irrational.

lim lim (cos2mm!z)" :{

6.2 Lebesgue Integral

6.2.1 Lebesgue Measure

The Lebesgue integral procedure essentially reduces to finding a measure for
sets of arguments. In particular if a set consists of too many points of discon-
tinuity, we need a way to define its measure that is known as the Lebesgue
measure. [t this subsection, we explain how to construct the Lebesgue mea-
sure of a point set.

As a simple example, let us consider a finite interval [a,b] of length L.
This can be decomposed into two sets: a set X consisting of some of the
points = € [a,b] and its complementary set X’ consisting of all points
x € [a,b] that do not belong to X. A schematic view of X and X’ is shown
in Fig. 6.4. Both X and X’ may be sets of several continuous line segments
or sets of isolated points.

We would like to evaluate the measure of X. To do this, we cover the set
of points X by nonoverlapping intervals A; C [a, b] such as

X C (A +Ag4---).
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X
A
*—O ——o—@ +— X
a )
—e O—O—b—eo— x
a b
e
e

Fig. 6.4. A set X and its complementary set X’

If we denote the length of A, by /£, the sum of £, must satisfy the
inequality
0<> 4 <L
k

In particular, the smallest value of the sum ), ¢; is referred to as the outer
measure of X and is denoted by

tout (X)) = inf (Z €k> .
k

In the same manner, we can find intervals A" C [a,b] of lengths ¢}, 05, -
that cover the complementary set X’ such that

X' (M +Ay+-), 0<> 4 <L
k
Here we define another kind of measure denoted by

pin(X) = L — piout(X') = L —inf (Z e;) , (6.13)
k

which is called the inner measure of X. Note that the inner measure of X is
defined by the outer measure of X’ not of X. It is a straightforward matter
to prove the inequality

0 < lffm(X) < /Jfout(X)~ (614)
Specifically, if
Hin(X) = prout (X),

it is called the Lebesgue measure of the point set X, denoted by pu(X).
Clearly, when X contains all the points of [a,b], the smallest interval that
covers [a, b] is [a, b] itself, and thus u(X) = L.
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Our results are summarized below.

& Lebesgue measure:
A set of points X is said to be measurable with the Lebesgue mea-
sure pu(X) if and only if i (X) = pous(X) = u(X).

Remark. An unbounded point set X is measurable if and only if (—¢,¢) N X is
measurable for all ¢ > 0. In this case, we define u(X) = lim, o0 it [(—¢, ¢) N X],
which may or may not be finite.

6.2.2 Definition of the Lebesgue Integral

We are now in a position to define the Lebesgue integral. Let the function
f(z) be defined on a set X that is bounded:

0 S fmin S f(x) S fmax-

We partition the ordinate axis by the sequence {fi} (1 < k < n) so that
f1 = fmin and f,, = fiax. Owing to the one-to-one correspondence between x
and f(z), there should exist sets X; of values  such that

fe < f@) < foy1 forze X, (1<k<n-1), (6.15)

as well as a set X,, of values x such that f(z) = f,,. Each set X}, assumes a
measure p(Xy). Thus we form the sum of products fi - u(Xy) of all possible
values of f, called the Lebesgue sum:

> i m(X). (6.16)
k=1

If the sum (6.16) converges to a finite value when taking the limit n — oo
such that

max |fx — fr41] — 0,
then the limiting value of the sum is called the Lebesgue integral of f(z)

over the set X.
The formal definition of the Lebesgue integral is given below.

& Lebesgue integral:
Let f(z) be a nonnegative function defined on a measurable set X
and divide X into a finite number of subsets such as

X=X1+Xo+ -+ X,. (6.17)
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Let f = infyex, f(x) to form the sum
> fen(Xy). (6.18)
k=1

Then the Lebesgue integral of f(z) on X is defined by

du = lim Xi) |,
/Xf a max| fr—fr—1|—0 L; fk,U( k>‘|

where all possible choices of partition (6.17) are considered.

Figure 6.5 is a schematic illustration of the Lebesgue procedure. Obviously,
the value of the Lebesgue sum (6.16) depends on our choice of partition.
If we take an alternative partition instead of (6.17), the value of the sum
also changes. Among the infinite variety of choices, the partition that max-
imizes the sum (6.17) gives the Lebesgue integral of f(z). That a function
is Lebesgue integrable means that the limit superior of the sum (6.18) is
determined independently of our choice of the partition of the z-axis.

J4= Jmax
5 /
f
fl =fmin X
0
]1 O——o0 oO——O0
I, ce
*——@ —oO
Le o o .~ o

Fig. 6.5. An illustration of the Lebesgue procedure

6.2.3 Riemann Integrals vs. Lebesgue Integrals

Before proceeding further with this discussion, we compare the definitions of
Riemann and Lebesgue integrals for a better understanding of the significance
of the latter. In the language of measure, the Riemann integral of a function
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f(z) defined on the set X is obtained by dividing X into nonoverlapping
subsets X; as

X=X1+Xo+--+X,, X;NX;=0, forany ¢,j,

followed by setting the Riemann sum

> R n(Xy). (6.19)

k=1

n

Here, the measure p(Xy) is identified with the length of the subset X}, and
&, assumes any point that belongs to Xj. We increase the number of subsets
n — oo such that

w(Xg) — 0 for any Xp,

and if the limit of the sum (6.19) exists and is independent of the subdivision
process, it is called the Riemann integral of f(x) over X. Obviously, the
Riemann integral can be defined under the condition that all values of f(x)
defined over X} tend to a common limit as p(Xy) — 0. Such a requirement
excludes any possibility of defining the Riemann integral for functions having
too many points of discontinuity.

Remark. In view of the analogy between the sum (6.12) and (6.18), we may
say that, in a sense, the Lebesgue integral is the limit n — oo of the quantity

An(0).

Although the Lebesgue sum given in (6.16) is apparently similar to the
Riemann sum given in (6.19), they are intrinsically different. In the Riemann
sum (6.19), f(&) is the value of f(z) at an arbitrary point &; € X;. Thus the
value of §; is allowed to vary within each subset, which causes an indefiniteness
in the value of f(&;) within each subset. On the other hand, in the Lebesgue
sum (6.16), the value of f; corresponding to each subset X; has a definite
value. Therefore, for the existence of the Lebesgue integral, we no longer need
local smoothness of f(x). As a result, the conditions imposed on the inte-
grated function become very weak compared with the case of the Riemann
integral.

6.2.4 Properties of the Lebesgue Integrals

Several properties of the Lebesgue integral are given below without proof.

1. If f(x) is the Lebesgue integrable on X and if X = X7 + Xo + -+ + X,

then .
/deu=;/xifdu~
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If two functions f(x) and g(z) are both Lebesgue integrable on X and if
f(z) < g(z) for any z € X, then

/X fu < /X gd.

. If u(X) =0, then [ f(z)dz = 0.
. If the integral [ f(x)dx is finite, then the subset of X defined by

X' = {x| f(a) = +o0}

has zero measure. This means that in order for the integral to converge,
the measure of a set of points = at which f(x) diverges is necessarily zero.

. Suppose that [ f(x)dz is finite and that X’ C X. If we make u(X') — 0,

then
fdu — 0.
X/

. When f(z) on X takes both positive and negative values, its Lebesgue

integral is defined by

/deuz/xf*dwr/xf‘du (6.20)

and
_ tdu — N
/leldu—/xf dp /Xf dp, (6.21)
where flz) for {=; f(z) >0}
x or {x; f(x) >0},
ff(x) = {0 for {z; f(x) <0},
and

f(2) = 0 for {z; f(x) > 0},
| —f(z)  for {x; f(x) <O0}.
Definition (6.21) is justified except when both integrals on the right-hand
side diverge.

.5 Null-Measure Property of Countable Sets

us show that any countable set has a Lebesgue measure equal to zero. A

rigorous definition of countable sets is given herewith.

)

Countable set:
A finite or infinite set X is countable (or enumerable) if and only if

it is possible to establish a reciprocal one-to-one correspondence between
its elements and the elements of a set of real integers.
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It follows that every finite set is countable and that every subset of a countable
set is also countable. Any countable set is associated with a specific number,
called the cardinal number, defined below.

& Cardinal numbers:

Two sets X; and X5 are said to have the same cardinal number if and
only if there exists a reciprocal one-to-one correspondence between their
respective elements.

Remark. A set X is called an infinite set if it has the same cardinal number
as one of its subsets; otherwise, X is called a finite set.

It should be stressed that an infinite set may or may not be countable. When
a given infinite set is countable, then its cardinal number is denoted by Ny,
which is the same as the cardinal number of the set of the positive real integers.
Furthermore, the cardinal number of every noncountable set is denoted by N,
which is identified with the cardinal number of the set of all real numbers (or
the set of points on a continuous line). Cardinal numbers of infinite sets, R
and N, are called transfinite numbers.

The most important property of countable sets in terms of measure theory
is given below.

& Theorem:
Any countable set (finite or infinite) has a Lebesgue measure of zero,
namely, null measure.

Ezxamples An illustrative example is the set of rational numbers that has
measure zero as shown earlier. The countability of this set follows from the
fact that it can be arranged in a sequence of proper fractions as

11 2 1 3 1 2 3 4
72733 4 4 5 5 55
Accordingly, since the set of all rational numbers in the interval [0, 1] has zero
measure, the Lebesgue integral of Dirichlet’s function x(z) over this interval
is well defined and equal to zero.

0,

Another well-known example of the set of measure zero is the Cantor set,
which is demonstrated in Exercise 2.
6.2.6 The Concept of Almost Everywhere

We have observed that sets of measure zero make no contribution to Lebesgue
integrals. This fact provides a concept of an equality almost everywhere
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for measurable functions, which plays an important role in developing the
theory of function analysis.

& Equality almost everywhere:
Two functions f(z) and g(z) defined on the same set X are said to be
equal almost everywhere with respect to a measure p(X) if

p{z € X; f(z) # g(z)} =0.

We extend this terminology to other circumstances as well. In general, a prop-
erty is said to hold almost everywhere on X if it holds at all points of X
except on a set of measure zero. Thus two functions f(x) and g(z) are said to
be equivalent (written f ~ g) if they coincide almost everywhere. For exam-
ple, Dirichlet’s function mentioned earlier is equivalent almost everywhere to
the function g(x) = 0.

Since the behavior of functions on sets of measure zero is often unimpor-
tant, it is natural to introduce the following generalization of the ordinary
notion of the convergence of a sequence of functions:

& Convergence almost everywhere:
A sequence of functions {f,(z)} defined on a set X is said to converge
almost everywhere to a function f(z) if

Jim (@) = f(2) (622)

for all x € X except for points of measure zero.

Examples A typical example is the sequence

{fn(2)} = {(=2)"}

defined on [0, 1]. Tt converges almost everywhere to the function f(x) = 0; in
fact it converges everywhere except at the point z = 1.

Exercises

1. Show that the set of all rational numbers in the interval [0,1] has a
Lebesgue measure equal to zero.

Solution: Denote by X’ the set of irrational numbers that is com-
plementary to X and the entire interval [0, 1] by I. Since u(I) =1,
the outer measure of X’ reads

/jfout(X/) = Nout(I_X) = Mout(I)_ﬂout(X) = 1_,U/out(X)'
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By definition, the inner measure of X is given by
pin(X) = pin(I) — :“out(X/) = 11— pou(X)] = fout(X).

The last equality asserts that the set X is Lebesgue measur-
able). The remaining task is to evaluate the value of u(X) = 0.

Let z (k=1,2,--- ,n,--) denote the points of rational num-
bers in the interval I. We cover each point z1, zo, -+, Ty, -+ by
an open interval of length £/2, ¢/22, ---, ¢/2", -, respectively,

where € is an arbitrary positive number. Since these intervals may
overlap, the entire set can be covered by an open set of measure
not greater than

D T

Since € can be made arbitrarily small, we find that . (X) = 0.
Hence, from (6.18) we immediately have u(X) =0. &

2. Evaluate the measure of a Cantor set, an infinite set constructed as fol-
lows: (i) From the closed interval [0, 1], delete the open interval (1/3,2/3)
that forms its middle third; (ii) from each of the remaining intervals
[0,1/3] and [2/3,1] delete the middle third; (iii) continue this process
of deleting the middle thirds indefinitely to obtain the point set on the
line that remains after all these open intervals.

Solution: Observe that at the kth step, we have thrown out 2¢~!

adjacent intervals of length 1/3%. Thus the sum of the lengths of
the intervals removed is equal to

1 2 4 on-1 I

2
z = cii— lim 3L 3/ ]
sttt i 1-2

This is just the measure of the open set P’ that is the comple-
ment of P. Therefore, the Cantor set P itself has null measure

p(P)=1-pP)=1-1=0. &
3. Show that if f(z) is nonnegative and integrable on X, then
plze X, f@)>c] < / fdu,

which is known as, Chebyshev’s inequality.

Solution: Set X' = {x € X, f(c) > ¢} to observe that

[ tan= [ g [ gaz [ gz e
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4. Show that if [, [f|du =0, then f(x) = 0 almost everywhere.

Solution: By Chebyshev’s inequality,

u[xGX,If(/)> ]<n/ fld =0

for all n =1,2,---. Therefore, we have

ploe X, f@ Zu[xexm Izt ] -0 &

6.3 Important Theorems for Lebesgue Integrals

6.3.1 Monotone Convergence Theorem

Our current task is to examine whether or not the equality

lim fn dz*/ f(z (6.23)

n—oo

is valid under the Lebesgue procedure. This problem can be clarified by
referring to two important theorems concerning the convergence property of
Lebesgue integrals; the monotone convergence theorem and the dom-
inated convergence theorem. Neither theorem is valid if we restrict our
attention to Riemann integrable functions. We observe that, owing to the
two convergence theorems, Lebesgue theory offers a considerable improvement
over Riemann theory with regard to convergence properties.

In what follows, we assume that X is a set of real numbers, and that {f,}
is a sequence of functions defined on X.

& Monotone convergence theorem:
If (f,) is a sequence such that 0 < f,, < fp4q for all m > 1 in X and
f =lim,_ fn, then

n—oo

lim fnd,u / lim fnd,u:/ fdu.
Xn—)OO X

Remark. The monotone convergence theorem states that in the case of
Lebesgue integrals, the conditions to reverse the order of limit and integration
are much weaker than in the case of Riemann integrals; i.e., only the point-
wise convergence of f,(x) to f(z) is required in the Lebesgue case, whereas
in the Riemann case we must have uniform convergence of f,(z) to f(z).
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Proof (of the monotone convergence theorem): The hypothesis
0 < fn < fn41 implies that

0< / fud < / fusrds,
X X

which indicates that the sequence { [ « fndp} increases monotonically
with respect to n; thus its limit n — oo exists as a we denote it by M
(possibly equal to oo). In addition, by hypothesis

/fndug/fdu, for all n. (6.24)
X X

Since (6.24) is true for arbitrary n, we have

MZHILII;O {/X fnd,u} g/deu.

Therefore, if we can verify the opposite inequality

MZ/deu, (6.25)

we will get the desired result,

M = lim fnd,u:/ lim fnd,u:/ fdu.
X X e X

n—oo

To show (6.25), let ¢ be a number such that ¢ € (0, 1) and introduce
the point set

Xn={x: cf(x) < fulx)}.
Owing to the monotonically increasing property of the sequence
{fn(z)} with regard to n, the set X,, satisfies the inclusion relation

X1 CXpCXsCor and (X, =X

n=1

In addition, the increasing property of the sequence { [ . fadu} yields

n

c/ fdp < fndup < lim {/ fnd,u} = M. (6.26)
Xn Xn n—oe
Since (6.26) must hold for any n, we have
c/ fdu < M. (6.27)
X
Furthermore, since (6.27) is true for all ¢ € (0,1), we have
/ fdu < M. (6.28)
X

Note that the substitution ¢ = 1 into (6.27) is allowed because the
symbol <, not <, is involved in (6.27). &

159
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6.3.2 Dominated Convergence Theorem (I)

In the previous argument, we saw that the order of limit and integration can
be reversed when considering monotonically increasing sequences of functions.
In practice, however, the requirement in the monotone convergence theorem,
i.e., that the sequence {f,(x)} must be monotone increasing, is sometimes
very inconvenient. In this subsection, we examine the same issue for more
general sequences of functions, i.e., nonmonotone sequences satisfying some
looser conditions and their limit passage. Our current objective is to prove
the theorem below.

& Dominated convergence theorem:

Let {f.} be a sequence of functions for almost everywhere on X such
that (a) lim, . fn(z) = f(x), and (b) there exists a nonnegative g such
that |f,| < g for all n > 1. Then, we have

lim fnd,u:/ fdu.

Remark. Note that the condition imposed on the theorem above is that the se-
quences { f,,} should be bounded almost everywhere. This condition is clearly
looser than that imposed in the monotone convergence theorem. Hence, the
monotone convergence theorem can be regarded as a special case of the dom-
inated convergence theorem.

6.3.3 Fatou Lemma

The proof of the dominated convergence theorem requires the lemma given
below.

#® Fatou lemma:
If f(z) > 0 for all n and for almost everywhere in a bounded measurable
set X and if lim,,—. o fn(z) = f(x), then

/ {lim inf fn} dy = / Fdu < liminf [ / fndu} :
where the definition is

liminf f, = lim [inf fk} .

n— oo n—oo |k>n
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Proof Let g, = infy>, fi. Since the sequence g, (x) is nonnegative and non-
decreasing, we have

lim g, = liminf f,.
n—oo n—oo

(See Sect. 2.1.4 for the precise definition of lim inf.) In addition, the monotone
convergence theorem implies that

lim gnd,u:/ lim gndu:/ lim inf f,,dp. (6.29)

It also follows that
gn() < ful) for any k > n.

Hence,
/ gnd,ug/ frdp for any k > n,
X X
that is,
< i .
/X gndu_gfl /X Jrdp

Taking the limit n — oo and applying the monotone convergence theorem,
we get

n—oo n—oo | k>n

lim Indp < lim {inf/ fkdu} zliminf/ fndp. (6.30)
X X nmee Jx

From (6.29) and (6.30), we conclude that

/ liminffndp:/ fd,ugliminf/ fndu. &

6.3.4 Dominated Convergence Theorem (II)
Our next task is to prove the dominated convergence theorem.

Proof Observe that f,, and f are Lebesgue integrable on X. From hypothesis,
it follows that f,, +g > 0 and g — f,, > 0 almost everywhere. Thus by Fatou’s
lemma, we have

/liminf(fn+g)du§11minf/ (fn+g)du
X e JX

n— 00
or
n— 00 n— 00

/ liminf f,du < liminf/ fndp (6.31)
X p's

by the linearity of the Lebesgue integral. It is also true that g — f,, > 0 on X;
thus also by Fatou’s lemma we have
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n—oo n—oo

[ tmin (o~ £)ds < timint [ (9 £)
X X

or equivalently,

—/ liminf f,dp < liminf {—/ fn] dp.
X n—oo n—oo X

The latter inequality can be rewritten as

/ liminf f,,du > limsup/ fndp. (6.32)
X b's

n—oo N—00

From (6.31) and (6.32) we set

/ liminf f,,dp < liminf/ fndp
X — JX

n—oo n

< limsup/ fndu S/ liminf f,du,
X X n—oo

n—oo

which clearly indicates that

liminf [ f,du =1lim sup/ fndu,
X X

n—00 n— o0

so that the limit lim, o [ fndp exists and is equal to [y limg, oo fndp =
J fdp. This completes the proof of the theorem. &

6.3.5 Fubini Theorem

For a function of several variables, we may define the Lebesgue integral by
exactly the same process as for a function of one variable. In cases of two
variables, for instance, a rectangle S = [a, b] X [¢, d] takes on the role of inter-
vals, and we need only to imitate the definitions and methods that we used
for functions of a single variable. We can develop the theory for the entire
plane R? analogously to that for the real axis R. In fact, all the consequences
in Sect. 6.2 for Lebesgue integrable functions on a closed interval [a,b] are
easily carried over to the corresponding propositions for the double integral
on the rectangle S without modifying the actual proofs in Sect. 6.2, except
for replacing f(z) by f(z,y).

However, an important new problem arises here. If f is integrable on the
rectangle S = [a,b] X [c,d], we have to determine whether the value of the

integral
//s f(z,y)dxdy (6.33)
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is equal to that of the repeated integrals

/Cd [/ab f(sc,y)dx] dy and /ab /Cdf(x,y)dy] dr.

This is true for continuous functions on S. But it is far from obvious that
the existence of the double integral (6.33) guarantees the existence of either
repeated integral.

The following example may lead the reader to consider the point mentioned
above.

Examples Assume the function

Foy) = {(;y) for (z,y) # (0,0), (6.3

0 for (z,y) = (0,0),

and compute the repeated integrals

L. :/Oldy {/Olf(m,y)dx} and I, :/Oldx [/Olf(x,y)dy]

Straightforward calculations yield

1 1 1
0 y / dx T
I, = d — | =—— | dy = ——dr = —
v A z/o Ay <w2+y2> RS R
1 1 1
0 —x —dy T
v /0 y/o 8x<x2+y2> ! /0 21T

Hence, we conclude that

and

Iwy 7& Iyza

which indicates that the order of integrations with respect to = and y cannot
be changed.

We now present the main theorem of this subsection.

# Fubini theorem:
Let the function f(z) be integrable on a rectangle S = [a, b] X [¢, d]. Then
the following equalities hold:

//Sf(x,y)dxdyZ/cd [/abf(:c,y)dccl dyz/ab [/cdf(x,y)dy] dz.
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According to Fubini’s theorem, a double integral [ [, s f(z,y)dxdy is computed
by integrating first with respect to  and then with respect to y, or vice versa.
We omit an exact proof of the Fubini theorem, since it requires rather lengthy
arguments regarding the existence and the convergence of the double integrals.
Instead, we present some applications of the theorem.

The following is an extension of the Fubini theorem:

#® Fubini-Hobson—Tonelli theorem:
Let the function f(z) be defined on S = [a,b] X [c,d]. Then, if either of
the repeated integrals

/ab l/cd |f(x,y)|dy] dx or /Cd l/ab|f(x,y)|dx] dy

exists, f is integrable on S and, hence,
b [ rd a rb
[ [ty = | [ / f(x,y)dy] o= [ [ / f(:r,y)d-r] dy.

Both the Fubini theorem and the Fubini-Hobson—Tonelli theorem for integrals
on a rectangle S may be easily extended to integrals on all of R? or to the
integrals on any measurable subsets of R2.

Exercises

1. Suppose that the function
gn(x) = _ok2pekT" | 2k + I)Qxe_(k+1)2x2

is defined on [0, c0), and form the sum

n
fn(l‘) = ng(gj) — _Qxe—fz + 2(?’1 + 1)2xe—(n+1)212.
k=1

Show that [ limy,—ec fr(2)de # limy oo [y~ fn(z)de.

Solution: We have

/000 nlin;o fn(x)dx = /000 (72xe*‘”2) dx = [e*ﬁ]:} = -1,

whereas
oo 0o

lim Jn(z)dx = {e‘wz - e_(”'*'l)z“’z} = 0.

n—oo [q 0

Therefore, (6.23) is not valid. &
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2. Given the function:

Ful@) = nsinnz for 0 <z < w/n,
=0 for w/n <z <,
show that ) )
lim [n(x)dx # lim f,(z)dx
n—oo 0

Solution: We have lim,, .o fn(z) = 0 for every x in [0, 7] and
lim,, oo foﬂ fn(z)dz = 2. Hence, we obtain the desired result. &

3. Suppose that the nonnegative functions {f,(z) : n € N} are each
summable over a measurable set X, and f, < f,41 on X. Show that
the limit function f = lim,,_.~ f, is summable over X and that

T . / fdp.

Solution: Let g, = f1 — fn,sothat 0 = g1 < gy < --- < f1. Thus,
the dominated convergence theorem ensures that lim, .. g, =

f1—f is integrable, and we have lim / (f1— fn)du = / (fr = fHduw,

which gives
/ Frdp— T fudp = / (fr - fdn.
X n—oo X

Further, as f is integrable since 0 < f < f1, we have

[ = nau= [ fian= [ gan
[ svn=tim [ gdu= [ pan— [ san

which gives

so that

lim [ fadu= / S, &

4. Examine the applicability to integrals fooo fn(x)dz of dominated and

monotone convergence theorems for the following: (i) f,(z) = 2n2e—""w’

(i) fo(z) = nee "
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Solution:
(i) Setting y = nx, we have
oo o0 P o0 2
/ fn(z)dx :/ 2n2e™ " dx =/ 2ne” Y dy = ny/,
0 0 0
where the last term diverges as n — oco. Hence, the lim,,_,
fooo fn(x)dz does not exist. Next, we observe that for x # 0,

n— oo n— o0

lim f,(z) = lim (2n2e—"2”2) —0,
whereas for x = 0,

lim f,(0) = lim (2n*) = oo.

n—oo n—oo
Thus, there is no limiting function f = lim, .~ f, that sat-
isfies the inequality f(z) > 2n2e="°* for all n in X, and we
can conclude that neither the dominated nor the monotone
convergence theorem is applicable.

(ii) It is found that

e > 2 1 21 1
/ fn(x)da :/ nxe” " dr = [—e‘”x ] =,
0 0 2 0 2

and that nze="*" — 0 pointwise as n — oo. Therefore, the lim-

iting function f(x) satisfying the inequality f(z) > nze~ """ does
not exist. Hence, neither the dominated nor the monotone conver-
gence theorem is applicable. &

5. Using Fubini’s theorem, derive the formula

1. b a

— 1+0

/ R - log + for a,b> 0. (6.35)
o logx 14+a

Solution: Note that the integral in the left-hand-side is beyond
elementary calculus, so that it is impossible to achieve (6.35) by
straightforward calculations. Instead, we observe that

1 b 1.6 _ ,a
/ dm/ :vydy:/ T e
0 a o logz

b 1 b
d 145
/dy/ mydm:/ Y = log i .
a 0 a y+1 l+a

and
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Thus, when we apply the Fubini theorem to the double integral

// x¥dxdy,
0<w<1, a<y<b)

we obtain the desired result (6.35). &

6. Show that the function f(x,y) given in (6.34) in Sect. 6.3.2 is not inte-
grable on [0,1] x [0, 1].

Solution: It follows that

22
// dxdny// 2 g drdy
0<z,y<1 0<z<y<1 (z y)
—2/ dy/ d dy—/ —

This means that the existence and equality of two repeated inte-
grals do not guarantee the existence of the double integral. &

f*y

6.4 The Lebesgue Spaces LP

6.4.1 The Spaces of LP

We close this chapter by demonstrating the relevance of the Lebesgue in-
tegral theory to the functional analysis that we discussed in Chap. 4. The
Lebesgue theory on integration enables us to introduce certain spaces of func-
tions that have properties that are of great importance in analysis as well
as in mathematical physics, in particular, quantum mechanics. These are the
so-called L? spaces of complex-valued functions f such that |f|? is integrable.

We have already dealt with the concept of Hilbert space. In fact, L? for
any measure p satisfies the conditions for a Hilbert space. We begin with a
short review of the definition of L? spaces in terms of measure, and follow this
by examining how the spaces possess vector space properties owing to the use
of the Lebesgue integral.

Let p be a positive real number and let X be a measurable set in R. The
LP space is defined as follows:

& Definition of LP space:
The LP space is a set of complex-valued Lebesgue measurable functions
f(z) on X that satisfy

/ |flPdp < o0
X

for p > 1.



168 6 Lebesgue Integrals

When the integral [ |f(z)[Pdx exists, we call it the p-norm of f and denote

it by
1/p
IIprZ(/X flpdu> .

Clearly for p = 2, the present definition reduces to our earlier definition of L2.

6.4.2 Holder Inequality

The following two inequalities are fundamentals that demonstrate the rela-
tions between the norms of functions involved in LP.

& Holder inequality:
For any f,g € LP under the conditions

p,q>1 and +

=
Q| =
Il
—_

we have
fge L' and |fgly < | fllpllglly

Proof We assume that neither f nor g is zero almost everywhere (otherwise,
the result is trivial). To proceed with the proof, we first observe the inequality

b
al/rpt/a < % +o forab>0, (6.36)

which we is justify by rewriting it as
1/ < E =+ 1’
p q

where we set t = a/b. Then, we note that the function given by

t 1
flty=t"/P -~ - - <0
p q
has a maximum at ¢ = 1, namely,
1 1
max f(t)=f(1)=1— - - - =0,
( p g

which results in the inequality (6.36), which we use to obtain

(@)oo A*p|£(x>|ﬁ . B*ﬂg(m)\{ (6.37)
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[/ Iflpdu] and B = U g|qdu]1/q.

The right-hand side of (6.37) is integrable from the hypothesis that f,g € L.
Therefore, using (6.37) we obtain

AP B¢
L / Faldpn < A7 / fPdu+ 2 / l91dy
B X p X q X

1 1

p q

where

Consequently, we have
/‘MmWASAB,
X

which proves the inequality. &

6.4.3 Minkowski Inequality

The other inequality of interest is stated below.

& Minkowski inequality:
If f,g € L? with p > 1, then

f+gelr and |f+glly <1+ llgll (6.38)

Proof For p = 1, the inequality is readily obtained by integrating the triangle
inequality for real numbers. For p > 1, it follows that

/ 1+ glPdy = / 1+ glP | fldu
X X
+ / 1+ glPgldp.
X

Let ¢ > 0 be such that

S4o=1
poq

Applying the Holder inequality to each of these last two integrals and noting
that (p — 1)g = p, gives us

1/q
/ |f(z) + g(z)|Pde < M {/ |f+ g|(P1)qdu]
X X

1/q
M[ / |f+g|pdu} 7 (6.39)
X
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where M denotes the right-hand side of the inequality (6.38) that we would
like to prove. Now divide the extreme ends of the relation (6.39) by

1/q
U |f + glpdu}
X

to obtain the desired result. &

Remark. It should be noted that neither the Holder inequality nor the
Minkowski inequality holds for 0 < p < 1 if u(X) > 0, which is why we
restrict ourselves to p > 1.

6.4.4 Completeness of LP Spaces

By virtue of the two inequalities discussed above, we can show the com-
pleteness properties of LP spaces, which is crucially important for developing
Hilbert space theory for Lebesgue measurable functions.

& Completeness of LP spaces:
The space LP is complete: i.e., for any f,, € LP satisfying

lim | fn = fallp =0,

n,Mm— 00

there exists f € LP such that

T £~ flly = 0.

Proof Let {f,} be a Cauchy sequence in LP. Then, there is a natural num-
ber n; such that for all n > ny, we have

1

||fn - fm” < 5

By induction, after finding ng_q1 > ni_s, we find ng > ng_1 such that for all

n > ng we have
1

Then {f,, } is a subsequence of {f,} that satisfies

1
ank+1 - f"k” < ok
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or

||fn1|| +Z H.fnk+1 - fnkH == A < 0.
k=1

Let
9k = |fm|+|fnz *fn1‘+"'+|fnk+1 7f7lk|7 k=1,2,---.

Then, by the Minkowski inequality,

/g£<x)du:/ (ol + g — S|+ s — Fo ) i
X X

< (Hfm Hp + Z ankJrl - fnk H)

k=1
< AP < 0.

Let g = limgg. Then ¢g? = limg,. By the monotone convergence theorem
given in Sect. 6.2.1, we have

/gpd,u: 11m/g£du<oo,
X k—o0 X

which shows that ¢ is in LP, and hence

oo p
/ <|fn1|+2|fnk+1 _fnk|> d.’E<OO7
X k=1
implying that
|f”1‘ + Z |fnk+1 - fnk|
k=1

converges almost everywhere to a function f € LP.
It remains to prove that || f,, — f|| — 0 as k — oco. We first note that

(oo}

f@) = fu, (@) = ) [frrsa (@) = fu(@)] -

k=j

It then follows that

||f_f7l]||§ E ||fnk+1_fnk|‘17<;27k: 2j—1°
=3

k=3
Therefore, ||f — fn,|lp — 0 as j — co. Now

an - f”p < ”fn - fnka + ”fnk - fH:lH

where || fn, — fu,llp — 0 as n — oo and k — oo and thus ||f, — fl, =
0 as n — oo. This shows that the Cauchy sequence {f,} converges to f
inIP. &
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Before closing this chapter, we must emphasize that if we employ the Riemann
integral to construct LP spaces, the theorem mentioned above breaks down so
that we can no longer expect completeness of the resulting function space. To
illustrate this point, we temporarily define the ‘L' space’ by a set of Riemann
integrable functions under the ‘1-norm’:

1
[Fil& E/O |f(2)]dz < oo.

We then consider a function

|1 forxe{a,},
fnl) = {O otherwise,

where {a,} (n = 1,2,---) is an infinite sequence of all rational numbers
in [0,1]. It readily follows that a function f,(x) — fu(x) € L' is Riemann
integrable and reads

R 1
1 — fonlli = / (@) — fu(@)ldz = 0.

Nevertheless, f,(z) converges to Dirichlet’s function x(z), which is not
Riemann integrable as noted earlier. As it is impossible to examine the quan-
tity
R
I £ = I,

using Reimann integrals, we cannot establish the complete function space
based on that method.

6.5 Applications in Physics and Engineering

6.5.1 Practical Significance of Lebesgue Integrals

From a practical viewpoint, what makes Lebesgue integrals so important is
the fact that they allow us to interchange the order of integration and other
limiting procedures under very weak conditions, which is not possible in the
case of Riemann integrals. In fact, in the case of Riemann integrals, the iden-
tities

o0

lim fu(x)dz = /OO nhlrolo fn(x)dz

)—
n—oo [_

and
i/i futwriz = [ ngm)dx

are valid only if the integrands on the right-hand side, i.e., lim f,, and > f,,, are
uniformly convergent. Such a restriction can be removed by using a Lebesgue



6.5 Applications in Physics and Engineering 173

integral since with the latter, only pointwise convergence of the integrand
is needed. We saw in Sect. 6.3 that the Lebesgue convergence theorem
and Fubini’s theorem markedly weaken the conditions necessary for the
validity of an interchange of the order of integration. As a result, we need
not monitor the order of the limiting procedure, which is very useful in the
practical calculations encountered in physics and engineering.

6.5.2 Contraction Mapping

Another important consequence of Lebesgue integral theory is the complete-
ness of the function space LP spanned by Lebesgue integrable functions.
LP spaces have a wide range of applications in physics, statistics, engineering,
and other disciplines. For instance, they serve as a basis in the development of
a rigorous theory of Fourier transformation, in which the mappings between
two different LP spaces are considered. Moreover, the theory of quantum me-
chanics is established on the basis of the L? space, a specific class of LP spaces
with p = 2. In both applications, the completeness property of the LP space
plays a crucial role in making the theory self-contained. In order for the reader
to learn more about this issue, we present the contraction mapping theo-
rem (or Banach’s fixed point theorem) below. This theorem proves the
existence of a unique solution to a certain kind of equation associated with
Lebesgue integrable functions, which makes the theory based on LP spaces
self-contained.
A preliminary terminology is defined below.

& Contraction mapping:
A contraction mapping 7' is a mapping from LP onto LP that satisfies
the relation
IT() =Tl <cllf—gll (0<c<1) (6.40)

for any f,g € L? (see Fig. 6.6).

rr rr

L) (9

Fig. 6.6. Sketch of a contraction mapping T acting on f,g € L
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Remark. If T is regarded as a differential operator acting on a Lebesgue inte-
grable function f, then we can say that ‘a contraction mapping is a mapping
that satisfies the Lipschitz condition’ (see Sect. 15.2.3).

We should keep in mind that the norm ||---|| used in (6.40) is in terms of
LP spaces, so that ||f — g|| = 0 means f = g almost everywhere. In plain
words, a contraction mapping reduces the distance between two elements in
the LP space.

We are now ready to move on to the main theorem.

& Contraction mapping theorem:
Let T be a contraction mapping and I be an identity mapping. Then

the equation
(T-Df=0 (6.41)

has one and only one solution f that belongs to L”.

| Remark. The solution f of the equation (6.41) is called a fixed point in LP.

The contraction mapping theorem guarantees the existence and uniqueness of
fixed points of certain self-mappings and provides a constructive method for
finding those fixed points. It should be emphasized that the theorem allows
us to prove the existence (and uniqueness) of solutions of ordinary differen-
tial equations with respect to Lebesgue integrable functions, as intuitively
understood if T is set to be a differential operator.

Proof (of the contraction mapping theorem): For arbitrary f, €
LP, we introduce a sequence of functions {f,} defined by

fi=T(fo), fo=T(f1), -+ fuo=T(fn-1), -~ .

We shall see below that the sequence {f,} is a Cauchy sequence
and thus has a limit f = lim, .. fn. It follows from the definition of

T that
[ fn = fatill = 1T (fa=1) = T(fr—1+5)|
<l fam1 = fr—144l
< <" fo— £l (6.42)
and

Ilfo—fill < Ilfo— full+-+fi—1 — £l
<(T+ce+- 4+ fo— Al

<(1-o)fo— Al (6.43)
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where we used the Minkowski inequality (6.38) with respect to the
p-norm designated by || - ||. From (6.42) and (6.43), we set

1o = Fasall € T llfo = Fill =0 (n— o0).

This indicates that {f,} is a Cauchy sequence and thus converges to
a limit (denoted by f) regardless of the choice of fy. Furthermore, the
limit f always belongs to LP since the space LP is complete. Hence,
the converging behavior of {f,} to f can be expressed by using the
concept of the norm of LP as

im [|f — £l = 0. (6.44)
We then obtain

ITCH) = fIE < NTC) = fall + 11 fn = £l
=T(f) = T(fa-)Il + Ilfn = [l
< Hf - fn—1|| + an - f” —0 (n - 00)7 (645)

which means that T'(f) = f almost everywhere. Consequently, equa-
tion (6.41) has at least one solution that is a limit f of the sequence
{fn} that we introduced.

The uniqueness of the solution f is readily understood. Suppose
g € LP such that T(g) = g. We then have

lg = Il =1T(g) = T(HII < cllg — [l

This means that ||g — f]| = 0 since 0 < ¢ < 1, so we have g = f almost
everywhere. &

Remark. Note that it is our use of the Lebesgue integral (instead of the
Riemann integral) that guarantees the validity of the contraction mapping
theorem. In fact, if we restrict ourselves to the Riemann integral, the limit f
of the sequence {f,} may not belong to LP, and we can no longer obtain the
result (6.45).

6.5.3 Preliminaries for the Central Limit Theorem

The effectiveness of Lebesgue integrals is also observed in probability theory,
particularly in the derivation of the central limit theorem, which plays
a fundamental role in statistical mechanics and in the statistical analysis of
experimental data. Later, we shall see that employing Lebesgue integrals is
necessary for proving the central limit theorem, where the Lebesgue con-
vergence theorem and Fubini’s theorem are used time and again.
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In order to prove the central limit theorem, we introduce a random vari-
able = (see Sect. 6.1.3); for instance,  may be the number of spots we get
when shooting a pair of dice or a real number that we randomly pick from
an interval on the real axis. Suppose that z lies in a set X on the real axis.
(Here, X may be a continuous interval, a set of discrete points, or a union of
the two.) In modern probability theory, measures characterizing the statisti-
cal properties of the system considered are defined in terms of the Lebesgue
integral. For instance, the probability (or distribution) that z is found in
subset Xo C X is given by

P(z: ze€ Xy = / pd, (6.46)
Xo

where p is the Lebesgue measure of X and p is the probability density as-
sociated with z. In general, p is assumed to satisfy the normalization condition
/  pdpp = 1. We can state that the random variables x and y are independent
if

P(z,y) = P(x)P(y).
Moreover, the variables x and y are said to be identically distributed if

P(z) = P(y).

We also define the expected (or mean) value of = and the variance of
x by the integrals

Bla) = /X epdp and V{z) = /X (z — E{x})* pdp,

respectively, where pu is the Lebesgue measure of X. In particular, the ex-
pected value of an imaginary exponent e'** where z is real, is known as the
characteristic function.

& Characteristic function:
The characteristic function ¢, (z) of a random variable x is defined by

©z(2) = E{e*"}.

It can be shown that

E{e*t} = 0, (2)py(2)
if and only if the random variables x and y are independent. Furthermore,
we obtain
Pa(2) = @y(2)

if and only if the variables x and y are identically distributed. The latter
condition is known as the uniqueness theorem for characteristic functions,
and the proof, which involves Fubini’s theorem, can be found in advanced
texts on probability theory.
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6.5.4 Central Limit Theorem

We are now ready to state the key theorem.

& Central limit theorem:
Assume a series of random variables {,,} in which the z,, are indepen-
dent and identically distributed. For arbitrary a and b (b > a), we have

D1 T — nm 1 (b .
lim Pla< =217 < :—/6*5/2d, 6.47
n— oo < — J\/ﬁ - /271, u é. ( )

where m = E{x,} and 0% = V{xz,}.

Briefly, the theorem states that the probability that the average of n random
variables equals « is proportional to e=o’/2, (Note that « is the average of n
variables and not a variable itself.) A random variable with the probability
density e=€"/2 i5 said to be normally distributed.

Remark. The central limit theorem is very effective in describing various
stochastic phenomena in nature since it can be applied regardless of the dis-
tribution of the n random variables; i.e., almost all classes of random variables
obey the theorem as long as they are independent and identically distributed.

An illustrative example of the central limit theorem in physics is the
Maxwell — Boltzmann distribution of an ideal gas. For a given tem-
perature 7', the distribution f(v) of the velocity of gas molecules v = |v| is
known to satisfy the equation

m 3/2 mu?
= - 6.48
10 = (5or) e (g ). (6.43)
where m is the mass of a gas molecule and kg is the Boltzmann constant. Here,
the velocity v(t;) as a function of discrete time ¢; (i = 1,2,--- ,n) serves as

n random variables. In general, in an equilibrium state, v(¢;) for different ¢;
is independent and identically distributed and, thus, if n is sufficiently large,
the time average of v(t;) obeys the normal distribution described by (6.48).
Figure 6.7 shows the distribution of the squared velocity of gas molecules,
which is determined from the formula 47v? f(v?), for various values of T'; we
set kg = 1.38 x 1072¥ kg - m?/s? - K and m = 6.6 x 10727 kg by considering
4He molecules. We observe that the mean value of v? shifts to the right with
an increase in the temperature, which can be intuitively understood to be due
to the acceleration of the molecules at high temperatures.

It is important to emphasize that the central limit theorem holds good for
any kind of distribution of the n variables {x;} as long as they are independent
and identically distributed. For example, let us consider n variables that obey
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Fig. 6.7. Distribution of square velocity v? of *He molecules

the distribution P(x) shown in Fig. 6.8. The average of these variables shows
the distribution depicted in Fig. 6.8, all of which converge to the normal
distribution as n increases. The fact that the distribution of {z;} can be
disregarded is the reason the normal distribution is so universally observed in

a wide variety of stochastic phenomena.

6.5.5 Proof of the Central Limit Theorem

As some further points have to be discussed in order to prove the central
limit theorem, we present below only an outline and not a rigorous proof.
Let us emphasize that the use of Lebesgue integrals is necessary for proving
the central limit theorem, and the Lebesgue convergence theorem and

Fubini’s theorem are used time and again.

Proof We have only to consider the case of m = 0 and o = 1; otherwise,
the new variable Z,, = (z, — m)/o is introduced to yield E{Z,} = 0 and

V{Z,} = 1. The characteristic function ¢, (z) for the variable

Yn NG

is given by
iz — - z
exp | —= > ;| ¢ =] ¢ ()
n e Vn

Oy, (2) =F
=1
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Fig. 6.8. Top: Distributions of a random variable x. Bottom: (a)—(c) Distributions

of the average value a of n random variables x1,x2, - - -

, Ty, with n = 10 for (a),

n = 100 for (b), and n = 1000 for (c). For each, 1000 «’s are sampled to create
the distribution. With increasing n, the distribution of a converges to the normal

distribution around the center of 0.125 as

expected

in which the condition that all x,, are independent allows us to obtain the last
expression. Furthermore, since all x,, are identically distibuted, we have

I (55) -

o (7

I

which is ensured by the uniqueness theorem discussed in Sect. 6.5.5.
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We want the limit of ¢, (2) at n — oo, so we use the formula (see the
lemma below)

lim ¢, (2) = e 212, (6.49)

n—oo

in which the right-hand side is the characteristic function of a normal dis-
tribution. The result of (6.49) together with the continuity theorem (see
below) states that

1 b
lim Pla <y, <b)=Pla<y<b) = \/7/ eV 20y, & (6.50)
n—oo T a

The following theorem forms the basis for the proof of the central limit
theorem.

& Continuity theorem:
Let x and x,, be random variables such that

lim ¢, (2) = ¢a(2)-

n—00

We then obtain

n—00

for arbitrary a, b(b>a) satisfying P(x = a) = P(z = b) = 0.

This theorem states that the convergence of characteristic functions implies
the convergence of the corresponding distribution functions. Since the proof
requires the use of Fubini’s theorem as well as the Lebesgue convergence
theorem and is quite complicated, we do not present it.

& Lemma:
If E{z} = 0 and E{2?} = 1 for a random variable x, then the charac-
teristic function ¢, (z) satisfies the relation

Tim. [% (%)}n = exp (—?) . (6.51)
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Proof The assumption that E{z?} = 1 < oo implies that p,(z) is twice
differentiable. In fact, we obtain

0z(2) = BE{e"*"},
¢/ (2) = E {jzeim} = B {ize"*"},

" d2 12T 2 izx
¢a' (2) = E T2¢ = E{-2%e"""},

where the Lebesgue convergence theorem was used to interchange the
order of differentiation d/dz and integration [ dz associated with calculation
of E{---}. The twice differentiability of ¢(z) allows us to expand it around

z=0 as
22

P (\/ﬁ) = 2(0) + %‘Pl‘,(o) + %%”(W),

where 7 is small enough to be |n| < |z|/y/n. Since ¢, (0) = 1 and ¢,'(0) =
E{ixz} = 0, we have

o ()] e ()
=nlog <1 + i@”(n))

— ) = 4 (> 1)
2 8n ’

where we used the inequality |¢”(n)| < 1 to expand the logarithmic term for
n > 1. As a result, we set

z " Z2 2'2
1' 1 e = — " O = ——
"ﬂoog[@(\/ﬁ)] 2¢() 2’

which is equivalent to (6.51). .
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Complex Functions

Abstract Differentiation and integration of complex functions are significantly dif-
ferent from those of real functions. In this chapter, we show that two very impor-
tant theorems—the Cauchy theorem (Sect. 7.2.2) and the Taylor series expansion
(Sect. 7.4.3)—result in a broad range of mathematical consequences that are highly
relevant and useful in mathematical physics. However, before moving on to the
principal discussion, we deal with the underlying concepts of analytic functions
(Sect. 7.1.2) and the geometric meaning of analyticity (Sect. 7.1.5).

7.1 Analytic Functions

7.1.1 Continuity and Differentiability

This chapter describes the theory of functions of a complex variable. Let C
denote the set of all elements z of the form

z=x+ 1y,

where z,y € R and i is a familiar symbol defined by i> = —1. Let D be a
domain in C. Then, a complex function defined by

f+D—-C

is a rule that assigns a complex-valued function f(z) to each z € D. This f(z)
is equivalent to an ordered pair of real-valued functions u(z) and v(z). Thus,
f(z) can be written in the form

w= f(z) =u(z) + w(z).

The real-valued functions u(z) and v(z) are called the real and imaginary
parts (or components) of f(z) (see Fig. 7.1). We may write v = Ref and
v=Imf.
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v=Imw
f
y=Imz w=f(z) 4 u+iv
,. .........
................ o
T Z=X+iy H
0 x=Rez 0 M;Rew

Fig. 7.1. A complex function w = f(z) that assigns a point on the w-plane to each
point on the z-plane

Once we introduce complex functions, the concepts of differentiation and
integration encountered in ordinary real calculus acquire new depth and sig-
nificance. When f(z) has its derivative in D, it is referred to as an analytic
function in D. (More precise definitions of analytic functions are given in
Sect. 7.1.3.) We shall see that the conditions for a complex-valued function
f(z) to be differentiable with respect to a complex variable z is much stronger
than that for a real-valued function f(z) with respect to a real variable z.
This restriction forces a great deal of the structure of f(2).

An exact definition of an analytic function is obtained by considering its
derivative with respect to a complex variable z. Therefore, our first task is to
determine the necessary and sufficient conditions for a complex function f(z)
to have a derivative with respect to z. Before stating what is meant by the
derivative f'(z), we begin with the definition of continuity for f(z).

& Continuity of complex functions:
Let f : D — C be a complex function and zy a point in D. Then, a
function w = f(z) € C' is continuous at the point zy if

lim f(z) = f(20). (7.1)

z— 20

In the limit of (7.1), the complex variable z may approach zy from any direc-
tion in D (see Fig. 7.2). Hence, if we say the limit (7.1) exists, it means that a
unique quantity f(zo) must result from the limiting process regardless of how
the limit z — zg is taken.

A similar feature is found in the definition of the derivative of f(z).

& Derivatives of complex functions:
A complex function f(z) is said to be differentiable at the point zq if
and only if the limit
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im L& =SG0) (7.2)
Z—20 zZ— 20
exists and is uniquely determined regardless of the manner in which z
approaches zy. When the limit exists, we denote it by f/(z), the derivative
of f(z) at 2.

y=Imz

x=Rez

Fig. 7.2. Approaching direction of z to zo

The definition(7.2) requires that the ratio [f(zo + Az) — f(20)]/Az always
tend to a unique limiting value, no matter the path along which z approaches
zo. This is an extremely strict condition; in fact, a number of theorems in the
theory of analytic functions are derived from this requirement.

Keep in mind that a function f(z) may be differentiable only at a point,
or on a curve, or through a region. An example for a differentiable function
at single point is presented in Example 3 in Sect. 7.1.2.

7.1.2 Definition of an Analytic Function

Among many differentiable functions, some specific kinds of functions form
the class of analytic functions as stated below.

& Analytic functions:
A function f(z) is said to be analytic at the point z = zj if and only if
it is differentiable throughout a neighborhood of z = zj.
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Remark. There are some synonyms for the term analytic: holomorphic,
regular, and regular analytic.

We offer some comments on the distinction between differentiability and
analyticity. As noted above, the conditions for f(x) to be analytic are more
stringent than those for it to be differentiable; in fact, a function f(z) is said
to be analytic at a point zy if it has a derivative at zg and at all points in
some neighborhood zg. In this context, if we say that a function is analytic on
a curve, we mean that it has a derivative at all points on a two-dimensional
narrow strip containing the curve. If a function is differentiable only at a
point or only along a curved line, then it is not analytic so that we say it
is singular there. A typical example of f(x) that is differentiable only at a
point is demonstrated in Example 3 below.

n

Ezamples 1. The function f(z) = z
where. In fact, the limit

is differentiable and analytic every-

(20 + A2)" — 2§

.
ArZo Az
-1 _
= lim |nzp~ '+ n(ni)zgszz o (AT =gt
Az—0 2

exists for arbitrary zp, and is clearly independent of the path along which
Az — 0. This means that any polynomial in z is differentiable and ana-
lytic everywhere.

2. The function f(z) = z* is neither differentiable nor analytic anywhere,
since the limit yields

. (oA A2) =y L A2
AmTn T T A 73

If Az — 0 parallel to the real axis, then Az = Az* = Ax so that the limit
equals 1. However, if Az — 0 parallel to the imaginary axis, then Az =
1Ay = —iAz* so that the limit equals —1. Therefore, the quantity (7.3)
depends on the path Az — 0, which means that it is neither differentiable
nor analytic anywhere.

3. The function f(z) = |z| is differentiable only at the origin. In fact,

flzo+ Az) — f(20)

(z0 + Az) (25 + Azy) — 2025
20A2" + 25 Az — AzAZ",

which yields

. flzo+ Az) = f(20) . 204z 4 25 Az — AzAZ*
lim = lim
Az—0 Az Az—0 Az

czo + 2§,
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where ¢ = lima,,0(Az*/Az) is a complex-valued constant that depends
on the path of Az — 0. Hence, the limit noted above is uniquely deter-
mined only when zy = 0, which means that the function f(z) = |z| is
differentiable only at a point z = 0.

7.1.3 Cauchy—Riemann Equations

Let f: D — C with f(z) = u(z) +iv(z) as usual. We give the necessary and
sufficient conditions for a function f(z) = u(z,y)+iv(z,y) to be differentiable
at a point zp € D. Let us assume that f(z) is differentiable at zp € D. Then

we have Af A A
1oy — i AL e el
F'(z0) = Aligo Az Aligo (Az + ZAZ) ’
Since f(zp) exists, it is independent of the path Az — 0; i.e., it is independent
of the ratio Ay/Ax. If the limit is taken parallel to the real axis, Ay = 0 and
Az = Ax, we have

f’( )_ li &_’_ﬁ 7@+-@
0= o\ ar TAz ) T 0x T lor

On the other hand, if the limit approaches the point zy along the line parallel
to the imaginary axis, Az = 0 and Az = iAy, then

(Av _Au) ov .Ou

"(20) = lim [ =— —i— — — i

= i
Ay—=0 dy Jy
From the initial assumption, these two limits must be equal, so equating real
and imaginary parts gives us
ou v Ju Ov
—=— and —=-——. (7.4)
dr Oy oy ox
Equations (7.4) are known as the Cauchy—Riemann relations (abbreviated
by CR relations), and they are a necessary condition for differentiability.
However, alone they are not sufficient, as they provide only necessary con-
dition. This is because they were determined from special cases of the re-
quirement of differentiability as demonstrated above. In fact, the sufficient
conditions for the differentiability of f(z) at zp consist of the following two
statements:

& Theorem:
A function f(z) is differentiable at zyp € D if and only if

(i) the first-order partial derivatives of u(x,y) and v(x,y) exist and are
continuous at zg, and
(ii) those derivatives at zo satisfy the CR equations.
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Proof We prove that conditions (i) and (ii) imply the differentiability of f(z)
at zo € D. (The converse was proven implicitly in the beginning of this sub-
section.) From hypothesis (i), the functions u, du/Ox, and Ou/dy are all
continuous at the point zg = xg + iy9, so we have

Au = u(wo + Az, yo + Ay) — u(zo,Yo)
0 0
= %Az—f— %Ay+51Aaj+52Ay, (7.5)
in approximation of the order Az and Ay. In (7.5), the partial derivatives
are equated at the point (xg, o), and the real numbers 1 and ey vanish as
Ax, Ay — 0. Using a similar formula for v(x,y), we have

Af = f(zo + Az) — f(z0) = Au+idv
_ Ou ou

= —Ar+ —Ay+e1Ax + 2 Ay
ox oy

+1 @Ax+@Ay+€3Ax+s4Ay .
or dy

Using the CR equations that are supposed to hold at the point (xg,yo) from

assumption (ii) above gives us

0 0
Af = (81; + ’aD (Ax +iAy) + Az (g1 +ies) + Ay(ea + ieq).

Dividing the both sides by Az = Ax + iAy yields

Af  Ou . 0v . Ax Ay
ZZ—%JFZ%JF(El +Z€3)KZ+(€2+Z€4)XZ. (7.6)
Since |Az| = /(Ax)? 4 (Ay)?, we have
|Ax| < |Az| and |Ay| <|Az|,
so that
Ax Ay
— < — | < 1. .
A <1 and ‘Az <1 (7.7)

Hence, it follows from (7.7) that the last two terms in (7.6) tend to zero with
Az — 0 because lima,_oe, =0 (1 <n <4). As a result, the limit

Af  Ou . Ov

A = i (78)

is independent of the path of Az — 0, so the derivative f’(z¢) exists. We
thus have verified that f(z) is differentiable at zg if conditions (i) and (ii) are
satisfied. This completes the proof of the analyticity of f(z). &
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Ezxamples 1. Regarding the function

F(2) = 2% = (2 — ) +i(2ay) = u+ i, (7.9)
we have 5 P 9 9
u v v u
oz ' Ay’ and oz Y Ay (7.10)

These equations mean that everywhere in the complex plane the CR rela-
tions hold and the partial derivatives are continuous. Hence, the function
(7.9) is analytic in the entire complex plane. Such analytic functions are
called entire functions.

2. We saw in Sect. 7.1.1 that the function f(z) = |z|> = 2? + 32 is not
analytic anywhere since it is differentiable only at the origin. In fact, it

yields
ou_, u_, v _ou
or T oy ¥ or oy

which satisfy the CR relations only at the origin.

7.1.4 Harmonic Functions

The CR relations immediately provide one remarkable result that points to
connections with physics. Provided that the CR relations hold in a region, we

set
0 Ou 0 Ov 0 Ov 0 Ou

Ordx Oxdy Odydx  Oydy (7.11)
Here we assume the continuity of the second-order partial derivatives of u(x,y)
and v(x,y), which allows us to interchange the orders of differentiation in
the mixed partial derivatives in (7.11). (This qualification, however, can be
dropped since the second-order partial derivatives of an analytic function are
necessarily continuous as we prove later.) Equation (7.11) yields the Laplace
equation:

0?u  9*u 9
—+ = = =0.
Ox? * oy? Viu
In the same way, it follows that
V0 =0.

Thus we set the following theorem:

& Theorem:
Each of the real and imaginary parts of analytic functions satisfies the
two-dimensional Laplace equation.

Any function ¢ satisfying V2¢ = 0 is called an harmonic function. Accord-
ingly, if f = u+14v is an analytic function, then v and v are called conjugate
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harmonic functions since V2u = V2v = 0 holds. The fact that real and
imaginary components of analytic functions satisfy the Laplace equation plays
a crucial role in solving applied second-order partial differential equations. De-
tail discussions on this point are presented in Sect. 9.4.3.

7.1.5 Geometric Interpretation of Analyticity

To gain in-depth insight into the nature of analytic functions, we reveal the
geometric meaning of “analyticity.” We know that the analyticity of f(z)

within a domain D ensures the existence of the derivative f'(z) = df/dz
defined by
oy e JEEh) — f(2)
Fz) = Jim h ‘

This suggests that at a point zy within D,
f(z0+h) = f(20) = f'(20)h (7.12)

for an arbitrary complex number i the magnitude |h| is sufficiently small.
Let us consider the geometrical meaning of (7.12). For the discussion to
be concrete, we assume, for the moment, that the derivative f’(z) takes the

values
-1 ;
fl(z0)=1+4 and f'(z)= %\/gl

at the points zg and z; in D. It then follows that

f'(z0)h = (1 +i)h =V2 (\[ + f) h =/2e"/4h, (7.13)

where h = |h|(cos + isin ) is a complex number having a certain argument
0. Equation (7.13) means that f’(z9)h is obtained through the rotation of the
vector h by m/4 followed by multiplication by v/2. (Note that any complex
number can be regarded as a vector on the two-dimensional complex plane.)
Similarly, we have

F(z1)h = e¥™/3h, (7.14)

which states that f’(z1)h is obtained through the rotation of h by 27/3. The
processes are schematically illustrated in Fig. 7.3. The vector h is depicted by
thin arrows and the corresponding vectors f’(z)h by thick arrows. Noteworthy
is that the magnitude |f’(z)h| at both zy and z1, is invariant no matter what
direction the vector h takes; indeed it follows from (7.13) and (7.14) that

|f'(20)h| = V2|h| and [f'(z1)h| = |h].

Hence, when the direction of h is shifted by increasing 6, |f’(z)h| remains
unchanged so that the front edge of the vector f’(z)h moves along a circle
centered at the origin.
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Fig. 7.3. Illustration of analyticity of f(z) at zo. An infinitesimal circle on the z-
plane centered at an analytic point is mapped to a circle on the w-plane with slight
modulation

Now we go back to (7.12), which says that if f(z) is analytic at zp, the
acquired vectors f’(zo)h given above are almost equal to the vectors f(zo +
h) — f(zo). This implies that the magnitude |f(z0 + h) — f(20)| is almost
invariant to the change in the direction of h characterized by 6. Thus as 6
increases, the front edge of f(zo + h) — f(20) should trace a circle centered at
the origin. (To be precise, the radius may be subjected to a slight fluctuation,
as shown in Fig. 7.3, owing to contributions from higher-order terms than h2.)
In other words, since f(zp) is fixed, an increase in 6 from 0 to 27 results in
movement of f(zp+ h) along the circle centered at f(zg). This means that for
analytic functions f(z), the change in the magnitude of f for an infinitesimal
change in z is isotropic. This isotropy is the geometric interpretation of the
analyticity of f(z).

Better understanding can be attained by considering the case of nonana-
lytic functions. Let us use the same argument for the function

f(z) = 2 + iy, (7.15)

where v = 22 and v = y. This function is not analytic, since it does not satisfy
the CR relations. Indeed,

except at x = 1/2. For such a nonanalytic function, the isotropy regarding the
magnitude of the difference |f(z + h) — f(z)] for infinitesimal h breaks down,
as is shown below. Once we set h = |h|(cos+isin@) with |h| = € = const,
we have

f(z0+h) = (zo +ecosb)? +i(yo + esinf)
mg + 2ecosb - xg + iy + iesin b
f(20) +2ecosb - xg+icsinb, (7.16)

12
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Fig. 7.4. Schematic illustration of nonanalyticity. When f(z) is not analytic at
z = zp, then an infinitesimal circle centered at zp is mapped to an ellipse so the
isotropy breaks out

up to the order of e. Equation (7.16) indicates that when 6 increases, the front
edge of the vector f(zp+h) moves along an ellipse that has a major axis of 2z¢e
and a minor axis ¢ (see Fig. 7.4). That is, the magnitude |f(zo+h) — f(z0)| is
no longer isotropic, but depends on the direction of h (except for the particular
case of zg = 1/2).

Exercises

1. Show that f(z) is continuous at zj if it is analytic there.

Solution: From the identity, we have

f(2) = f(z0) = f(20 + Az) — f(20) = Az - f(ZO+AA*Z;_f(Zo)

and with the definition Az = z — zp, we set
. o . / _
Jim [f(z0+ A2) = f(z0)] = (Jim Az) f'(z0) = 0.

Moreover, if we write f(z) = u(z) +iv(2), it follows that u(z) and
v(z) are both continuous. &

2. Express the Cauchy—Riemann relations in polar coordinates (r, ).

Solution: By imposing z = = + iy = re’’, we transform the
partial derivatives in terms of x into 9/0x = (9r/0x)(0/0r) +
(00/0x)(0/00). After some algebra, we obtain 9/0x = cos 0(9/0r)—
(sinf/r)(0/00), which, together with the same procedure with re-
spect to 0/0y, yields the polar form of the CR relations as

ou 10v Ou ov

o~ roe o0 or

Their abbreviated forms read u, = vg/r and ug = —rv,. &
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3. If f(z) is analytic in a region D and if |f(z)| is constant there, then f(z)
is constant. Prove it.

Solution: If |f| = 0, the proof is immediate. Otherwise we have
u? 40> =c#0. (7.17)

Taking the partial derivatives with respect to x and y, we have
Uz + vv, = 0 and uuy + vvy, = 0. Using the CR relations, we
obtain wu, —vuy, = 0 and vu, + uuy = 0, so that

(u* + v*)u, = 0. (7.18)

From (7.17) and (7.18), and from the CR relations, we conclude
that u, = v, = 0. We can obtain u, = v, = 0 in a similar manner.
Therefore, f is constant. &
4. Let ¢(x,y) and ¢(x,y) be harmonic functions in a domain D. Show that
if we set u = ¢, — Y, and v = ¢, — 1, the function f(z) = u + v with
the variable z = x + iy becomes analytic in D.

Solution: It follows that u, — vy = (Pys — Vuz) — (Puy — Yyy) =
—V?21, where by, = 1, was used. Since V*¢) = 0, we have u, =
vy. Similarly, we obtain u, = —v,. Hence, u and v satisfy the CR
relations in D, which indicates the analyticity of f on D. &

7.2 Complex Integrations

7.2.1 Integration of Complex Functions

We now turn to the integration of functions f(z) with respect to a complex
variable z. The theory of integration in the complex plane is just the theory
of the line integral as defined by

(e %) N
dz = li i )Az;.
‘/a f(Z) & N—»ool,rgzi—)ozf(ZZ) Zi
1 i=1
Here (Az;) is a sequence of small segments situated at z; of the curve that
connects the complex number a7 to the other number as in the z-plane.
Since there are infinitely many choices for connecting a; to «a, it is possible
to obtain different values for the integral for different paths.

Examples Assume the contour integral

I:f z dz
C.

i

from z =1 to z = —1 along the three paths (see Fig. 7.5): (i) the unit circle
centered at the origin in the counterclockwise direction, designated by Cf;
(ii) that in the clockwise direction, denoted by Cs; and (iii) the real axis, Cs.
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Fig. 7.5. Three paths. C1, C2, and Cs

(i) The values of z on the circle are given by z = ¢'?, so dz = ie*?df. Thus,
I(Cy) = jf Z*dz = / e i df = 7. (7.19)
Cy 0
(ii) In a similar manner as in (i), we have
I(Cy) = 7{ z'dz = / e e dh = —mi. (7.20)
Co 0
(iii)  On the real axis, z = and dz = dx so that

~1
I(Cs) = ?{ z'dz = / rdr = —2. (7.21)
C3 1

In general, complex integrals on the path C possess the following property:

& Darboux’s inequality:
Contour integrals on a path C' satisfy the relation

/Cf(z)dz

where M = max|f(z)| on C and L is the length of C'.

< ML, (7.22)
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This property is very useful because in working with complex line integrals it
is often necessary to establish upper bounds on their absolute values.

Proof Recall the original definition of complex integrals:

/ f(z)dz = lim zn:f(zk)ﬂzk.
C n—oo Pt

It follows that

<D If)] A < MY Az < ML,
k=1 k=1

> fz) Az,
k=1

where we have used the facts that |f(z)| < M for all points z on C, that the
>~ |Azg| represents the sum of all the chord lengths joining zx_; and zj, and
that this sum is not greater than the length of C'. Taking the limit of both
sides, we obtain the desired inequality (7.22). &

7.2.2 Cauchy Theorem

We are now in a position to proceed with the key theorem in the theory of
functions of a complex variable. Consider the complex integral

I(Cy) :?{ sin zdz
C;

along the closed paths C; (¢ = 1,2,3) shown in Fig. 7.6: (a) C; = OP, (b)
Cy=0Q+ QP, (c) C3 = OR+ RP. After some algebra, we obtain

Fig. 7.6. Three paths: OQP, OP, and ORP
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I(Cy) = I(Cy) = I(C3) = ...,

which gives us the possibility that the integral from O to B remains invariant
in quantity for our choices of integration paths. Actually, this is entirely true;
it depends only on the two endpoints O and B. This peculiarity of integration
comes from the fact that the integrand sin z is analytic on the integration
paths in question. (In fact, it is analytic everywhere on the complex plane.)
This result can be generalized to the following statement, called Cauchy’s
theorem, which is pivotal in the theory of complex function analysis.

& Cauchy’s theorem:
If f(z) is analytic within and on a closed contour C, then

7{ f(z)dz = 0. (7.23)
C

The somewhat lengthy discussions that are needed for a proof of Cauchy’s
theorem, are beyond the scope of this textbook, but two immediate corollaries
of the theorem are listed below.

& Path independence:
If f(z) is analytic in the region R and if contours C; and Cj lie in R
and have the same endpoints, then

fdz = fdz.
C1 C2

The proof readily follows by applying Cauchy’s theorem to the closed contour
consisting of Cy and —C1 as shown in Fig. 7.7:

Jor Lo = b= b

Intuitively, the symbol —C' denotes the contour C' traced in the opposite
direction. A discussion on the path independence follows the theorem below.

& Uniqueness of the integral:

If f(2) is analytic within a region bounded by a closed contour C, then
the integration fzzf f(2)dz along any contour within C' depends only on z;
and z9.

This theorem states that an analytic function f(z) has a unique integral not
only a unique derivative. From a practical viewpoint, this theorem is frequently
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Fig. 7.7. Two integration paths: C; and C2 = —C}

used in the evaluation of contour integrals, since it allows us to choose an
appropriate contour.

Remark. When integrating along a closed contour, we agree to move along
the contour in such a way that the enclosed region lies to our left. An inte-
gration that follows this convention is called integration in the positive sense.
Integration performed in the opposite direction acquires a minus sign.

7.2.3 Integrations on a Multiply Connected Region

0 X 0 X

Fig. 7.8. Left: A simply connected region. Right: A multiply connected region

We should note that Cauchy’s theorem applies in a direct way only to sim-
ply connected regions. A region R is said to be simply connected if every
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closed curve in R can be continuously contracted into a point without leav-
ing R. Otherwise, it is said to be multiply connected; (see Fig. 7.8). The
physical reason for this restriction is easy to find. The important fact is that
Cauchy’s theorem is a restatement that no singular point is included within
the region bounded by the contour C'. If the region R bounded by C' is multi-
ply connected, it becomes possible to put on singular points within the closed
contour C' but surely outside the region R in question. In this case, Cauchy’s
theorem no longer holds even though the integrand f(z) is analytic everywhere
in the region.

Nevertheless, there is still a way to apply Cauchy’s theorem to multiply
connected regions, which is based on allowing the deformation of contours as
described below.

Suppose that f(z) is analytic in the region that lies between two closed
contours C' and C’, where C encloses C’. Draw two lines AB and EF close
together, so as to connect the two contours. Then ABDEFGA described as
shown in Fig. 7.9 is a closed contour, which we denote by S and f(z) is analytic

within it. Then, we have
7{ f(z)dz =0.
s

Now let the lines AB and F'E approach infinitely close to one another. The
contribution from the part BDE tends toward the integral around C' in the
positive (i.e., counterclockwise) direction. Similarly, the contribution from
FGA tends toward that around C” in the negative (clockwise) direction, thus
minus that around C’ in the positive direction. The contributions from AB

0 X

Fig. 7.9. Closed contour of ABDEFGA that consists of C and C’
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and FF approach equal and opposite values since they ultimately become the
same path described in opposite directions. We thus come to the conclusion
that

j{ f(z)dz = f(z)dz.
c c

This means that, if a function is analytic between two contours, its integrals
around both contours have the same value.

Remark. There is an immediate extension to the case where C' encloses several
closed paths Cp,C5,---, all external to one another. Because of Cauchy’s
theorem, an integration contour can be moved across any region of the complex
plane over which the integrand is analytic without changing the value of the
integral. It cannot be moved across a hole (the shaded area) or a singularity
(the dot), but it can be made to collapse around either, as shown in Fig. 7.10.
As a result, an integration contour C' enclosing n holes or singularities can
be replaced by mn separated closed contours C;, each enclosing a hole or a
singularity as given by

fcf(z)dz = é%@ f(z)dz.

~|] ~ =

Fig. 7.10. Collapse of an integration path onto the boundaries of a hole (a large
shaded region) and singularity (a small shaded dot)

7.2.4 Primitive Functions

Here is a definition of the primitive function of a complex function.

#® Primitive function:

Let f(z) be a function that is continuous in a domain D and has the
property §. f(z)dz = 0 for every closed path C' in D. Then, the primitive
function F'(z) of f(z) is defined by

Fe)= [ CF(Z)d (20,2 € D),
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which is analytic in D with the derivative

dF(z)
dz

= f(2).

Proof Consider the differential

z+Az z z+Az
F(z+Az)—F(z) :/ f(z')dz'—/ f(z’)dz’:/ f(2dZ', (7.24)

Z0

where we make use of the path-independence property. If we write

z+Az z+Az 2+ Az
/ F()d2 = £(2) / F()d + / ) — f(2))de

z+Az
= f(x)0z + / () — F(2))d",

then (7.24) becomes

z2+Az
F(z+Az) = F(2) — f(z)Az = / [f(2") — f(2)]dz". (7.25)

Since f(z) is continuous, corresponding to an arbitrary small positive number
g, there is a number ¢ such that

lz—2|<d = |f(z)—f(&)| <e.

Now choose |Az| < ¢, which ensures |z — 2’| < § for 2’ on the path C in
question. Therefore, we have

z+Az 2+Az
/ [f(2') = f(2)]d?, S/ [f(z") = f(2)|1dz"] < e|Az]

and (7.25) can be written as

'F(z+Az)F(z)
Az

- f(2)

< e for |[Az| < 4.

Since € can be arbitrarily small, we conclude that

lim F(z+ Az) — F(z)
Az—0 Az

or equivalently,
dF(z)
()]

This result is obtained for any point in D, so F(z) is analytic in D. &
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e,
4

1

Fig. 7.11. Integration paths used in Exercise 1

Exercises

1. Evaluate the integral

I(C):/sinzdz
c

203

(7.26)

along the two paths shown in Fig. 7.11: (a) C; = OB, (b) C; = OA+AB.

Solution: Since sinz = sin(x + iy) = coshysinz + isinh y cosx
and dz = dx + idy, we can divide (7.26) into real and imaginary

parts as
I(C) = /C(cosh y sin xdx — sinh y cos xdy)
+ /C(cosh y sin xdy + sinh y cos zdx).
Noting x = y along the curve C7, we have
I(Cy) = (1+4) /01 coshzsinzdr — (1 — 1) /01 sinh x cos zdx

= [cosh z cos z]é + [sinh z sin x}é

= (1 —cosh1lcosl)+i(sinh1sin1), (7.27)

where we employ partial integrations. Next we evaluate I along
Cs. Along the path from O to A, z = 0 and dz = 0, and along the

path from A to B, y = 1 and dy = 0. Therefore,

I1(Cy) :/ sin zdz
Cy

1 1 1
=— / sinh ydy + / coshxsinzdx + 1 / sinh x cos zdx
0 0 0

= (1 —coshlcosl)+i(sinhlsinl).
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Observe that I(Cy) = I(Cs). &
2. Set C': |z| = r, and calculate the following integrals:

FEL s an f
c ? c 17| c ®

Solution: Let z = re?®, which yields dz = ire?df and |dz| = rd.

Hence, we have the results: (i) | §, dz/z| = | fo%(irew)/(reie)dﬂ =
o, (i) §.dz/|z| = [2T(ire®)/rdo = 0, (iii) §,|dz|/z = [

r/(re?®)dd =0. &
3. Let f(z) be analytic on a unit circle D about the origin. For any two
points z; and zo on D, there exists two points & and & on the line
segment [z1, zo] that satisfy the relation

f(z2) = f(z21) = {Re [f"(€)] + ilm [f"(&2)]} (22 — 21).- (7.28)

Prove it. (This is a generalization of the mean value theorem that is
valid for real functions.)

(i)

Solution: From assumptions, we have
2z 1
- = "(2)dz = - ! — d
S =) = [ = o) [Pl - s
1
= (22— 21) {/ Re[f' (21 + t(zg — 21))] dt
0

1
i / I [f (21 4+ t(22 — 21))] dt}. (7.29)
0
Note that the integrals in the last line are both real. Hence, they

satisfy the mean value theorem for integrals of real-valued func-
tions g(t) that are expressed by

1
/ glz1 + t(ze — z1)]dt = g[z1 + ¢(22 — z1)] when 0 <c < 1.
0
Setting &, = 21 + k(22 — z1) with 0 < ¢ < 1 (k = 1,2), we
get the desired equation (7.28). &
7.3 Cauchy Integral Formula and Related Theorem

7.3.1 Cauchy Integral Formula

We now turn to the famous integral formula that is the chief tool in the
application of the theory of analytic functions in physics.



7.3 Cauchy Integral Formula and Related Theorem 205

& Cauchy integral formula:
If f(z) is analytic within and on a closed contour C', we have

(7.30)

crk—a

f(2) y 2mif(a) 1if a is interior to C,
=
0 if a is exterior to C.

Proof The latter case is trivial; when z = a is exterior to C, the integrand in
(7.30) becomes analytic within C so that we have at once ¢[f(z)/(z—a)]dz =0
by virtue of the Cauchy theorem. Hence, we consider below only the case where
z = a is within C.

Suppose that the integral

1@,

Tla) = cZ—a

(7.31)

around a closed contour C' within and on which f(z) is analytic. In view of
the discussion in Sect. 7.2.3, the contour C' may be deformed into a small
circle of radius r about the point a. Accordingly, the variable z is expressed
by z = a + re®.

Now, we rewrite (7.31) as

J(a) = f(a) 740 B }[C wdz. (7.32)

zZ—a

The first integral on the right-hand side becomes

d 2 . 00
f{ - Za :/ Z:;G 9 = 2ri. (7.33)
C <~ 0

Hence, (7.30) is confirmed if the second integral of (7.32) vanishes for some
choice of the radius 7 of the circle C. To show this, we note the continuity of
f(2) at a, which tells us that for all £ > 0 there exists an appropriate quantity
0 such that

[z—al <é = [f(2) - fla)] <e.

This implies that for any arbitrarily small e, we can find » = |z — a| that
satisfies the relation

f(z) = fla) |£(2) — f(a)] e .
jizadz‘ < ]{C Wklz\ < 52775 = 27e. (7.34)
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Thus by taking r small enough, but still greater than zero, the absolute
value of the integral can be made smaller than any preassigned number. From
(7.32 to 7.34), we obtain the desired equation:

Mdz =2mif(a) if a is within C. & (7.35)

zZ—a

Remark. If a is a point located just on the contour C, the integral (7.30) will
have the principal value integral (see Sect. 9.4.1).

The Cauchy integral formula gives us another hint by which to comprehend
the rigid structure of analytic functions: If a function is analytic within and
on a closed contour C, its value at every point inside C' is determined by its
values on the bounding curve C.

7.3.2 Goursat Formula

A remarkable consequence of the Cauchy’s integral formula is the fact that,
when f(z) is analytic at z = a, all of its derivatives are also analytic. Fur-
thermore, the region of analyticity for those derivatives is identical with that
of f(z). To prove the theorem, we use the integral representation (7.35) to
evaluate the derivative,

2mif (a)
o )} L)
ey e a){z(z— o m= f{(zf_(i)zdz- (7.36)

The last equality in (7.36) is verified from

7{ [(2 —a i(Z;(Z —a) (Zf_(23)2] *

- f(2) i WML
_h%(Z—&)Q(Z—a—h)d < bQ(b—|h|)’ (7.37)

where M is the maximum value of | f(z)| on the contour, L is the length of the
contour, and b is the minimum value of |z — a| on the contour. The right-hand
side of the inequality in (7.37) approaches zero as h — 0, so we have

f(z) f(2)

lim - 5 dz =0,

h—0 {(Z—a)(z—a—h) (z—a)
which ensures the equality of the last part of (7.36).
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We can continue with the same process to obtain higher derivatives, ar-
riving at the general formula for the nth derivative of f at z = a:

& Goursat formula:
If f(2) is analytic within and on a closed contour C, we have

£ (g) = 2 j{ _S@ g m=0,1,2,0). (7.38)

C2mi ) (2 —a)t!

Note that equation (7.38) guarantees the existence of all the derivatives
f'(a), f"(a),--- and the analyticity at all a’s within C.

Remark. The Goursat formula (7.38) is valid only within the contour, and
thus gives no information as to the existence of the derivatives just on the
contour.

7.3.3 Absence of Extrema in Analytic Regions

An additional noteworthy fact associated with Cauchy’s integral formula
(7.30) is that it points up the absence of either a maximum or a minimum of
an analytic function within a region of analyticity.

For example, if z = a is a point within C, from (7.30) we see that

1 27

f(a) fla+ pe'®)dg, (7.39)

21 o
which means that f(a) is the arithmetic average of the values of f(z) on any
circle centered at a. We thus have |f(a)| < M, where M is the maximum
value of | f| just on the circle. (Equality can occur only if f is constant on the
contour.)

The above argument applies to arbitrary points within the circle and,
further, to a region bounded by any contour C' (not necessary a circle). We
thus conclude that the inequality |f(z)| < M holds for all z within C, which
means that |f(z)| has no maximum within the region of analyticity.

Similarly, if f(z) has no zero within C, then 1/f(2) is an analytic function
inside C and |1/f(2)| has no maximum within C, taking its maximum value
on C. Therefore | f(z)| does not have a minimum within C' but does have one
on the contour C'. We thus arrive at the following important theorem.

& Absolute maximum theorem: If a nonconstant function f(z) is ana-
lytic within and on a closed contour C, then |f(z)| can have no maximum
within C.
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& Absolute minimum theorem:
If a nonconstant function f(z) is analytic within and on a closed contour
C, and if f(z) # 0 there, then |f(z)| can have no minimum within C'.

Accordingly, points at which df /dz = 0 are saddle points, rather than true
maxima or minima.

We further observe that the theorems apply not only to |f(z)| but also to
the real and imaginary parts of an analytic function. To see this, we rewrite
(7.39) as

27 27
2rf(a) = 2m(ug +iv,) and 27mf(a) = flz+iy)de = / (u + iv)do,
0

0

(7.40)
where u, and v, are the values of u(z,y) and v(z,y) at z = z + iy = «a.
Equating the last terms of the two equations in (7.40), we obtain

1 2 1 2
Ug = — ud¢ and v, = —/ vdo,
271' 0 271' 0

so that u, and v, are the arithmetic averages of the values of u(x,y) and
v(z,y), respectively, on the boundary of the circle. Hence, based on the same
reasoning as above, we see that both of u and v take on their minimum and
maximum values on the boundary curve of a region within which f is analytic.

7.3.4 Liouville Theorem

We saw in the previous discussion that |f(z)| has its maximum M on the
boundary of the region of analyticity of f(z). In certain cases, the maximum
of |f(2)| bounds the absolute value of derivatives |f(™(2)|, as stated in the
theorem below.

& Cauchy inequality:

If f(z) is analytic within and on a circle C' with a radius r, and M (r) is
the maximum of |f(z)| on C, then we have

|
‘f(”)(z)‘ < ::L—HM(T) within and on C.

This is called the Cauchy inequality.

Proof Goursat’s formula reads

f(n)(ZO) — n'fg ( f(Z) dz

211
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Take |z — zp| = r and use the Darboux inequality to get the desired result:

| |
o) < 3] . o = gr-am
- “']yin(r) & (7.41)

If the f(z) we have considered is analytic at all points on the complex plane,
i.e., if it is an entire function, the above result reduces to the following
theorem:

# Liouville theorem:

If f(z) is an entire function and |f(z)| is bounded for all values of z,
then f(z) is a constant.

Proof Let n =1 and M (r) = M in (7.41) to obtain

7ol < 2

Since f(z) is an entire functions we may take r as large as we like. Thus we can
make |f'(z9)| < € for any preassigned e. That is, |f'(z0)| = 0, which implies
that f'(z9) = 0 for all zg, so f(z9) = const. &

Liouville’s theorem is a very powerful statement about analytic functions over
the complex plane. In fact, if we restrict our attention to the real axis, then it
becomes possible to find many real functions that are entire and bounded but
are not constant; cosx and e~ are cases in point. In contrast, there is no
such freedom for complex analytic functions; any analytic function is either
not bounded (goes to infinity somewhere on the complex plane) or not entire
(is not analytic at some points of the complex plane).

7.3.5 Fundamental Theorem of Algebra

The next theorem follows easily from Liouville’s theorem and provides a re-
markable tie-up between analysis and algebra. In what follows, the points z
at which f(z) = 0 are called the zeros of f(z) or roots of f(z).

& Fundamental theorem of algebra:
Every nonconstant polynomial of degree n with complex coefficients has
n zeros in the complex plane.
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Proof Let P(z) be any polynomial. If P(z) # 0 for all z, then the function
f(z) = 1/P(z) is entire. Moreover, if P is nonconstant, then P — oo as
z — o0 so that f is bounded. Hence, in view of Liouville’s theorem, f must be
a constant. This result means that P is also a constant, which is contrary to
our assumption that P is a nonconstant polynomial. We thus conclude that
P(z) has at least one zero in the complex plane.

Furthermore, an induction argument shows that an nth-degree polynomial
has n zeros (counting multiplicity; see Remark 1 below). If we assume that
every kth-degree polynomial can be written

Pu(z) = Az —aq) -+ (2 — ag),
it follows that
Poi1(z)=Az—ap)(z—a1) - (z—ag). &

Remark.

1. The point « is called a zero of order k (or zero of multiplicity k) of
the function P(z) if it reads

P(z) = (2 = a)*Q(2),

where Q(z) is a polynomial with Q(«) # 0. Equivalently, « is a zero of
order k if

P(a)=P'(a)=--=P*(a)=0 and P¥(a) #£0.

2. Tt can be shown that if f1(z) and f2(z) are analytic within and on C' and
if [f2(2)] < |f1(2)| # 0 on C, then fi(z) and fi(z) + f2(z) have the same
number of zeros within C. This is called Rouché’s theorem, which is
verified in Sect. 9.3.4.

7.3.6 Morera Theorem

The final important theorem is called Morera’s theorem and, is in a sense the
converse of Cauchy’s theorem.

& Morera theorem:
Let f(z) be a continuous function on some domain D and suppose that

]{Cf(z)dz =0

for every simple closed curve C in D whose interior also lies in D. Then f
is analytic in D.
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Proof For some fixed point zy in D, define the function

F(z) = /Z f(z)dZ', z€e D,

where the path is along the line segment in D from zy to z. From this, we
have

. . ; . 24+ Az z+Az
F(z+42) —F(z)  f( )/ dz'*i/ {f(') = f(2)} &2’ = [(2),

where Darboux’s inequality is used in the second term in the limit Az — 0.
As a result, we get

Az Az

F'(z) = f(2),
which indicates the existence of the first derivative of F'(z), so F(z) is analytic
in D and f(z) is also analytic. &

Exercises
1. Let f(2) be analytic within a circle D : z = |R|, and let it satisfy the
relations |f(z)| < M and f(0) = 0.
(i) Prove that
M
[f(z)] < E|z| for z € D. (7.42)

(ii) Prove that the equality in (7.42) holds at z = z; if and only if there
exists a complex number ¢ that yields |¢| = 1 and

M
f(z0) = Ct (7.43)
Statements (i) and (ii) constitute the Schwarz lemma.
Solution: (i) Equation in (7.42) holds trivially for z = 0. For
considering the case of z # 0, we specify the circle D' : |z]| = p < R

and set the function g(z) = f(z)/z. Since g is analytic within and
on D', it follows from the theorem in Sect. 7.3.3 that

M
< < —
l9(2)| < max|g(z)] < %

which means that
M
|f(2)] < —|z| for z € D'.
p
By fixing 2z within D’ and taking the limit of p to R, we get to
(7.42).

(ii) If the equality in (7.42) holds at some zy € D except at the
origin, we have
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SIS

l9(20)| = > |g(2)| for z € D.

It follows again from the theorem in Sect. 7.3.3 that g(z) must be
constant within D. Hence, we have

M
g(z) = cw with |¢| = 1.

This reduces to the desired result (7.43). &

2. Let f(z) be analytic on a domain D and f(z) # 0. Show that if f(a) =0
with a € D, then it is always possible to find small p > 0 such that

0<l|lz—al<p = f(z)#0.
This means that zeros of f(z) are necessarily isolated from each other.

Solution: Suppose that z = @ is an nth zero of f(z). From the
definition of zero of a complex function, there exists an n € IN
such that

p<n = fa)#0 and fP(a)=0.
Hence, the Taylor series of f(z) around z = a reads

_Oof(n+p)(a)z_an+p_z_an 2

where

> f(nt+p)(a) (n)
(e =Y e ars so ) = T 20,

p=0

Since g, (z) is analytic at a, it is continuous there. Thus we can
find p > 0 such that

1™ (a)|
lz—al <p = |gn(z) —gnla)| < 3
It follows from the triangular inequality that
1™ @)] _1[/™(a)]

2 n! 2 n!

lgn(2)] > |gn(a)] > 0.

This implies that for our choice of p,

O0<|z—al<p = flz)=(z—a)"gn(z) #0. &
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3. Obtain an alternative form of Cauchy’s integral formula expressed by
) R2 _ 2 27 f(reie)
— iy de
f(z) = fre®) 27 /0 R2 —2rRcos(6 — ¢) + 12

that is valid for |z] < R if f(z) is analytic for |z] < R. This is called
Poisson’s integral formula.

Solution: Consider the function
Z*

9(Q) = mf((),

which is analytic for |¢| < R. Hence, for the contour C : [(| = R,
we have ¢, g(¢)d¢ = 0. Furthermore, Cauchy’s integral formula
tells us that §. f(¢)/(¢ — z)d¢ = 0. From these two results, we
obtain
1 1 z" R? — |z f(©
ami o (5 + ) 100 = g =0
(7.44)

Setting z = re*® and ¢ = Re'’, we have
(C—2)(R*—2%¢) = (Rew - rei‘z’) (R2 — re_i‘bRew)
= R%¢" [R? — 2rRcos(f — ¢) +1°] .

Substituting in (7.44), we arrive at the desired formula. &

7.4 Series Representations

7.4.1 Circle of Convergence

We now turn to a very important notion: series representations of complex
analytic functions. To begin with, we note (without proof) that most of the
definitions and theorems in connection with the convergence of series of real
numbers and real functions presented in Chap. 2 and 3 can be applied to
complex counterparts with little or no change. Here we give a basic theo-
rem regarding the convergence property of infinite power series consisting of
complex numbers.

& Theorem:
If the power series

i an2" (7.45)
n=0

converges at z = zg # 0, then it converges absolutely at every point of
|z| < |20| and, furthermore, it converges uniformly for |z| < p where 0 <

p < lzl.
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Proof We first prove the statement regarding absolute convergence. From hy-
pothesis, we see that the series >~ anz{ converges. We set

n

k

Sn = E apzgy,
k=0

to obtain
[Sn, — Sn—1] = |anzl| = 0 (n — o0).

Hence, there exists an integer M > 0 that satisfies
|anzgy| < M for all n,

which implies

o0 o0 P o0
n| _ n| | <

S lanl = Y lansf] | 2| <3| 2],
n=0 n=0 n=0
Therefore, if |z| < |20, the right-hand side converges so that the series (7.45)
converges absolutely.

Next we consider uniform convergence. For every z satisfying the relation
|z| < p < |z0], we have

z
20

o0 oo n
Slan <My Lo
n=0 n=0 |Zo|n

since 0 < p/|zo| < 1. In view of the Weierstrass M-test, we conclude that the
series (7.45) converges uniformly on the region of |z| < p. &

This theorem states that converging behavior of power series

i anz" (7.46)
n=0

can be classified into the following three types:

1. It converges at all z.

2. It converges (ordinary and thus absolutely) at |z| < R, but diverges at
|z] > R, in which the real constant R depends on the feature of the series.

3. It diverges at all z except the origin.

This classification leads us to introduce the concept of radius of conver-
gence R of the power series (7.46). For the above three cases, it becomes

1. R=0, 2. Ritself, 3. R =0,

respectively. The circle C' with the radius R about the origin is called the
circle of convergence associated with the series. Note that just on C, con-
verging behavior of the corresponding series is inconclusive—it may or may
not converge.
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The following theorems provide us with a clue for finding the radius of
convergence of a given power series.

& Theorems:
Given a power series > - a,2", its radius of convergence R equals

a
(i) R= lim “|, if the limit exists;
n—00 | Up41

1

limsup,, . V/|an] .

(i) R =

7.4.2 Singularity on the Radius of Convergence

Given a complex-valued power series, the convergence criterion based on the
radius of convergence discussed in the previous subsection does not provide
us with any information about the convergence property of the series just on
the circle of convergence. We present below two important theorems regarding
the latter point.

& Theorem:
If the power series ZZOZO a, 2" has a radius of convergence R, then it
has at least one singularity on the circle |z| = R.

Proof Set
f(z) = Z anz".
n=0

If f(z) were analytic at every point on the circle of convergence, then for each
z with |z| = R, there would exist some maximal ¢, such that f(z) could be
continued analytically to a circular region |z — zg| < €., where zj is located
on the circle |z] = R. (See Sect. 8.3 for details of analytic continuation.)
Here ¢, would depend on 2y and we define

€= min &, > 0.
lz0|=R

By performing continuations successfully for all possible zg, we obtain a func-
tion g(z) that is analytic for |z|] < R + e. Clearly for |z| < R, g must be
identical to f. In addition, g must have a power series representation,

9(z) = bp2", (7.47)
n=0

that is convergent for |z| < R+ ¢. Yet since for |z| < R
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9(2) = f(2) = an2",
n=0
we conclude that

This implies that the radius of convergence of (7.47) would be R, which clearly
gives us a contradiction. We thus conclude that f(z) has at least one singu-
larity on the circle |z] = R. &

In general, it is difficult to determine when a function has a singularity at a
particular point on the circle of convergence of its power series. The following
theorem is one of the few results we have in this direction.

& Theorem:

Suppose that a power series > - a,z" has a radius of convergence
R < oo and that a,, > 0 for all n. Then the series has a singularity at
z = R on the real axis.

Proof By the previous theorem, the function

flz) = Z anz"
n=0

has a singularity at some point Re’®. If we consider the power series for f
about a point pe'® with 0 < p < R, we have

o , () ( peic o
F) = ba(z—pe®) =) ! 77(56 ) (z = pe')",
n=0 n=0 ’

where the radius of convergence is R — p. (If it were larger, the power series
would define an analytic continuation of f beyond Re'®.) Note, however,
that for any nonnegative integer 7, the derivative fU) reads

FD(pe’) = "n(n—1)- (n—j+ Dan(pe)" 7.
n=j
Since a,, > 0, we have
[FD(pe)| < 19 (p).

This implies that the power series representation of f around, z = p, expressed
by

> £(n)
o= 0y
n=0 :



7.4 Series Representations 217

must have a radius of convergence R— p. On the other hand, if f were analytic
at z = R, the above power series would converge on a disc of radius greater
than R — p. Therefore, f is singular at z = R. &

7.4.3 Taylor Series

Below is the one of the main theorems of this section, which states that any
analytic function can be expanded into a power series around its analytic
point.

& Taylor series expansion:
If f(z) is analytic within and on the circle C' of radius r around z = a,
then there exists a unique and uniformly convergent series in powers of

(z —a),
z) = ch(z —a)* (Jz—a|l <), (7.48)

with

ck}: = ——

fPa) 1 f(©)
k! 2mi fC‘:

The largest circle C' for which the power series (7.48) converges is called the
circle of convergence of the power series and its radius is called the radius
of convergence.

Proof Let f(z) be analytic within and on a closed contour C. From Cauchy’s
integral formula, we have

fla+h)= ! 7{Cf(z)dz, (7.49)

27i z—a—nh

where a is inside a contour C'. The contour is taken to be a circle about a,
inasmuch as the region of convergence of the resulting series is circular. We
employ the identity

14 h n h? T pN—1 z—a—h\ N
z—a (z2—a)? (z—a)N-1 z—a N

to obtain the exact expression

N—-1

1 h™ N
z—a—h Z‘; {(z—a)”‘*l] + (z—a—h)(z—a)V’

n=

Substituting this into (7.49), we have

fla+h) = ]{ f( +ﬁ /(z) dz. (7.50)
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Since the first integral can be replaced by the nth derivative of f at z = a,

we have
N-1,,

h
fla+h)= Z;) Hf“”(a) + Ry, (7.51)
where, Ry is the second term on the right-hand side of (7.50). It follows from
(7.51) that if limy_.oo Ry = 0, the Taylor series expansion of f(z) around
z = a is obtained successfully. This is indeed the case. As f(z) is analytic
within and on the contour C, the absolute value of Ry is bounded as

[l }( /() Ll o YA
C

Bl =155 (z—a)N(z—a—h) |~ rN(r—|n])’

(7.52)

where r is the radius of the circle and M is the maximum value of |f| on the
contour. Within the radius r, || < r so that

lim Ry =0.
N —oo

Hence, we have

fla+h)y =Y n—?f(”)(a), (7.53)

n=0

which holds at any point z = a + h within the circle of radius r. &

We note that the series (7.53) converges for large h as far as |h| < 7., since
Ry vanishes as N — oo for any value of |h| smaller than r.. Furthermore, as
the inequality (7.52) holds whenever f(z) is analytic within and on the circle
of radius r., the radius of convergence, r, can extend up to the singularity
is nearest neighbor to z = a. When the extending circle goes beyond the
nearest singular point, the inequality becomes invalid so that the Taylor series
expansion fails.

7.4.4 Apparent Paradoxes

We have seen that the radius of convergence is determined by the distance to
the nearest singularity. Interestingly, this explains some apparent paradoxes
that which occur if we restrict our attention only to values of the series along
the real axis of z.
A familiar example is the Taylor expansion of f(z) = 1/(1 — z) around the
origin: .
2
1_Z_l+z+z +e- (7.54)
Obviously, both sides of (7.54) “blow up” at z = 1. At z = —1, on the other
hand, the right-hand side diverges, whereas the left-hand side has a finite
value of 1/2. Notably, this apparent paradox occurs at all points represented
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by z = €'?, i.e., at any point on a unit circle surrounding the origin. The
reason for this is clear from the point of view of the radius of convergence.
(We leave it to the reader.)

Another example is

ORI

Observe that f(™(0) = 0 for any n = 0,1,---, so if one puts this result
blindly into the Taylor formula around z = 0, one obtains apparent nonsense
as e~1/%° = 0. The point here is that z = 0 is a singularity, where the Taylor
series expansion is prohibited.

These two examples suggest the importance of realizing the difference be-
tween the series representing a function and “the function itself.” A power
series, such as a Taylor series, has only a limited range of representation char-
acterized by the radius of convergence. Beyond this range, the power series

is unable to represent the function. For example, the function considered in

(7.54),

fe) = 1,

exists and is analytic everywhere except at z = 1, but its power series around
z =0, given by

(7.55)

T+z+22+-

exists and represents [ only within the unit circle centered at the origin (i.e.,
|z| < 1). The region in which a power series reproduces its original function is
dependent on the explicit form of the series expansion. In fact, an alternative
series expansion of (7.55) around z = 3 is given by

1 1 1 9

2—!-4(2 3) 8(2 3N+,
which exists and represents (7.55) only within the circle of radius 2 centered
at z = 3. We thus conclude that power series (including Taylor’s, Laurent’s,
and others) are not regarded as pieces of a versatile mold by means of which
one can cast a copy of the function. Each piece of the mold can reproduce the
behavior of f only within the region where the series converges, but gives no
indication of the shape of f beyond its range.

7.4.5 Laurent Series

When expanding a function f(z) around its singular point z = a, Taylor’s
expansion is obviously not suitable but we can obtain an alternative expansion
that is valid for a singular point. The latter kind of expansion is called a
Laurent series expansion. Laurent series enter quite often in mathematical
analyses of physical problems, where functions to be considered have a finite
number of singularities.
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& Laurent series expansions:
Let f(z) be analytic within and on a closed contour C' except at a point
z = a enclosed by C. Then, f(z) can be expanded around z = a as

oo

f(z) = Z cn(z—a)?, (7.56)
with the definition
L _fO 4 (7.57)

"7 2mi Jo (C—a) T

The series (7.56) with the constants (7.57) is called the Laurent series
expansion of f(z).

Fig. 7.12. Conversion of a closed contour C into C7 4+ C5 so as not to involve the
singularity of f(z) at z = a in it

Proof The trick to deriving a, Laurent series expansion is to use the contour
C1 + C illustrated in Fig. 7.12 such that its interior does not contain the
singular point of f(z) at z = a (i.e., f is analytic within and on the contour).
As is indicated, the original contour C' can be reduced to two circular con-
tours C and C5 encircling z = a counterclockwise and clockwise, respectively.
Applying Cauchy’s theorem, we have

f(a+h):1ﬁMdz

271 z—a—nh

o /() 1 /()
= omi fc P fc sy L)



7.4 Series Representations 221

Note that |z — a| > |h| on the contour C; and |z — a| < |h| on Cy. We thus
have

1 1 1 1 et h n
Z—a—h:z—a.l_hzz_aZ(z_a> on C (7.59)

and

1 1 1 1 z—a\"
i (h> on G (7.60)

n=0

The substitution of these two expressions into (7.58) yields

z—a”
flath)= 27r1[7{€1; Z_anJrlf dZ—&-j(]{ Z

C2 p=1

1

(z)dz] .

(7.61)
The order of integration and summation within the square brackets can be
reversed since the infinite series involved in the integrals converge. Eventually,
we obtain

o0

n. _ 1 f(z)

fla+h)= n;oo cnh™; e = 5] jéc o dz. (7.62)
Here, the contour for the coefficients ¢,, should be C; in the positive direction
for n > 0 and C5 in the negative direction for n < 0. The series (7.62) is
what we call the Laurent series expansion of f(z) around the singular point
z = a. Note that C7 can be taken as the contour for all values of n with the
reverse direction for negative n’s. This is because the integrand is analytic
in the region between C; and Cs, which allows us to expand the size of the
contour Cy until it coincides with the larger contour C;. &

7.4.6 Regular and Principal Parts

An important property of Laurent series is the series resolution. To see this,
we rewrite (7.62) as follows:

fla+h) = chh —I—Zc_ hom, (7.63)

The first term in (7.63) converges everywhere within the outer circle of conver-
gences, whereas the second term converges anywhere outside the inner circle.
This means that the Laurent series expansion resolves the original function
f(z) into two parts: one that is analytic within the outer circle of conver-
gence, and the other that is analytic outside the inner circle of convergence.
Obviously, each part is analytic over different portions of the complex plane.
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The part of the Laurent series consisting of positive powers of h is called
the regular part. The other part, consisting of negative powers, is called the
principal part. Either part (or both) may terminate at a finite degree of the
sum or be identically zero. Particularly when the principal part is identically
zero, then f(z) is analytic at z = a, and the Laurent series is identical with
the Taylor series.

Remark. At first glance, the regular part exhibited in (7.63) resembles the
Taylor series. However, this is not the case; the nth coefficient cannot gen-
erally be associated with f(")(a) because the latter may not exist. In most
applications, f(z) is not analytic at z = a.

7.4.7 Uniqueness of Laurent Series

Taylor and Laurent series allow us to express an analytic function as a power
series. For a Taylor series of f(z), the expansion is routine because the coef-
ficient of its n term is simply f(™)(z)/n!, where zj is the center of the circle
of convergence. In contrast, for the case of a Laurent series expansion, the
nth coefficient is not (in general) easy to evaluate. It can usually be found by
inspection and certain manipulations of other known series, but if we use such
an intuitive approach to determine the coefficients, we cannot be sure that
the result we obtain is correct. The following theorem addresses this issue.

& Theorem:
If the series -
Z an(z — 20)" (7.64)

converges to f(z) at all points in some annular region around zg, then it is
the unique Laurent series expansion of f(z) in that region.

Proof Multiply both sides of (7.64) by
1

2mi(z — zg)ktL’

integrate the result along a contour C' in the annular region, and use the easily

verifiable fact that
dz

2mi Jo (2 — z0)F—nHl

1 O
%ﬁ (Z*ZO)IHJ = Qag.

= 6kn

to obtain
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Thus, the coefficient ay in the power series (7.64) is precisely the coefficient in
the Laurent series of f(z) given in (7.57), and the two must be identical. &

Remark. A Laurent series is unique only for a specified annulus. In general, a
function f(z) can possess two or more entirely different Laurent series about
a given point, valid for different (nonoverlapping) regions; For instance,

1
1 ;+1+z+22+-~~, 0<|z| <1,

1) = 2= =
z(1—2z) _i_i_i_...7 1< |z] < oo.

7.4.8 Techniques for Laurent Expansion

The following examples illustrate several useful techniques for the construction
of Taylor and Laurent series.

(a) Use of geometric series

Suppose that a function
1
f(z) = (7.65)

zZ—a

fails to be analytic at z = a. We would like to obtain the Laurent series of
f(2) around z = a. First we note that for |z| < |a|, f(2) reads

ﬁ: clbl—z/a clbi_o:( ) (7.66)

This is obviously the Taylor series expansion of f(z) around the point z = 0.
That is, for |z| < l|a|, the Laurent series of f(z) given in (7.65) becomes
identical to its Taylor series. Nevertheless this is not the case for |z| > |a],
since its radius of convergence is R = |a|. Hence, we should also evaluate the
Laurent series around z = a that is valid for |z] > |a|. In a similar manner as
above, we obtain

i—a *Z() Z% for |z[ > |al. (7.67)

=0

Expansions (7.66) and (7.67) both serve as the Laurent series expansions of
f(2), although the regions of convergence are different from one
another.
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Remark. The function f(z) given in (7.65) can be expanded by this method
about any point z = b; Indeed, write

1 1

f(z):zfa: (z—=b)—(a—0) (b7 a).

Then, either

n

1 X (z-0)
flz) = - (Iz = b < la—b)
a—bnz:%(a—b)”

or

6= Y A (=4 > =),

n=0

(b) Rational fraction decomposition

Next we assume a function

1

16 = 2 eryva

The roots of the denominator are z = i and z = 2, which are the only points
at which f(z) fails to be analytic. Hence, f(z) has a Taylor series about z = 0
that is valid for |z| < 1 and two Laurent series about z = 0 that are valid for
1 < |z| < 2 and |z| > 2. To obtain them, we use the identities

22— (240)2+2i= (2 —1i)(z —2)

and

1 1 1 1
1@ ==y ~ 2= (z—2 z—z‘>'
When we want the Laurent series of f(z) around z = 0 that is valid for
1 < |z] < 2, it suffices to expand the function 1/(z — 2) in the Taylor series
about z = 0 [see (a) above] and then expand 1/(z — ¢) in the Laurent series
about z = 0 that is valid for |z| > 1. (The latter series is also valid for
1 < |z| < 2.) If these two series are subtracted, we obtain a series for f(z)
that is valid for 1 < |z| < 2, which is the desired Laurent series.

(c) Differentiation

The method used in (b) fails for functions with a double root in the denomi-

nator such that i

f(z):m-
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Among alternative methods, the simplest one is the differentiation

From the discussions regarding the earlier case (a), the function 1/(1 — z) is
seen to be represented by

o0
S el <,
1 _ n=0
1—2 =1
n=0

Hence, term-by-term differentiations yield

o0

do(n+1)z" 2l <1,

— n=0

o0
N1z, 2> 1
n=0

Exercises

1. Let f(z) be an entire function. Employ the Taylor series expansion to
show that the function defined by

f(z) = f(a)
g(Z)f s—aq ,z#a’
f'(a), z=a

is also entire.

Solution: For z # a, we employ the Taylor series expansion of
f(2) to obtain

f¥(a)
31

f"(a)
2!

9(z) = f'(a) + (z—a)+ (z—a)’+- . (7.68)
By the definition of g, the representation (7.68) is valid at z = a.
Hence, g is equal to an everywhere-convergent power series and is

thus an entire function. &

2. If f is entire and if for some integer k > 0 there exist positive constants
A and B such that
f(2)] < A+ Blz|",

then f is a polynomial of degree k at most. Prove it
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Solution: Note that the case £k = 0 is the original Liouville
theorem. To prove the case of £ > 0, we employ mathematical
induction, and consider

f(z) = £(0)
ﬂ@—{ s 270 (7.69)
1(0), z=0,

where f(2) is assumed to obey the conditions noted above. By
Exercise 1, g is entire. In addition, by hypothesis on f we have

l9(2)] < C + DIz

Hence, by induction, g is a polynomial of degree k — 1 at most,
then f is polynomial of degree k at most owing to the definition
(7.69). This completes the proof. &

3. Find the Laurent series of the multivalued logarithmic function given by
f(z) =log(1+ 2) =log|l + z| + iarg(1l + z).
Solution: The branch cut (see Sect. 8.2.3) is set so as to extend

from —oo to —1 along the real axis. Hence, log(1 + z) is analytic
within the circle |z| = 1. Since

d
— log(1 =
dz og(1 +2) 142’
we may expand
1 o0
1+Z=1—z+z2—z3+---=7;)(—1)"2n (2] <1).

Then, term-by-term integration yields

zode 22 28
S 2 a2 1
/1+£ z 2+3 +C (2] < 1),

where C' is the constant of integration. Since log1 = 0, it follows

that C' =0 and
22 28 d 112"
10g(1+z)=z—5+§—~-=;(—1) - (=l <1).

Other branches of log(1 4 z) have the same series except for dif-
ferent values of the constant C. &
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4. Find the power series representation of f(z) about z = 0 that satisfies the
differential equation

I'(z)+ f(z) =0 with f(0)=1. (7.70)

Solution: Let f(z) = 1+ Y .2 a,2". Then we have f'(z) =
S nagz" !
=a; + Y oo (n+1)a,412™. Substitute this into (7.70) to obtain

1+a; =0 and a,+ (n+1)apy1 =0 for n > 1.

The latter result yields

1

an = (~1) a1 = (1) ! !

Gy == (—1)""q.
n(nfl)a 2 ( )n!al

Hence, we have a,, = (—1)"/n!, so that

n

flz)=1+ Z (_1!)712” = &

5. Let f(z) =Y.." o cn(z —a)™ be analytic for |z — a| < R. Prove that

1 21 . o0
o |f(a+reze)]2d9:z:|cn|2r2" for any r < R.
TJo n=0
Then show that
o
Z len|?r?™ < M(r)?, (7.71)
n=0

in which M (r) = max,_,|—, | f(2)[. The result (7.71) is called Gutzmer’s
theorem.

Solution: From assumption, it follows that

|f(2)|2 = |:i Cn(reie)n:| |:i C:n(Teie)m:| = i Cnc.tnrmﬁLnei(”*m)e.
n=0

m=0 n,m=0

This infinite series converges uniformly on the circle |z — a| =
r < R, which allows us to interchange the order of integration and
summation as expressed by

oo

2m 27
/ |f(a+ re?®)?do = Z cncl ™t / et (n=mf g,
0 0

n,m=0

The right-hand side vanishes when n # m since the integral equals
zero. Hence, we have
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27 [ee)
/ [f(a+re)2d0 = |en[*r®™ x 27,
0

n=0

which is equivalent to the desired equation. Furthermore, since
|f(a+re)| < M(r), we have

= 2 2n 1 27T 0y 2 1 o 2 2
" = — < = .
;:O: len*r 27r/o |fatre)*do < 2#/0 M(r)’do = M(r)®. &

7.5 Applications in Physics and Engineering

7.5.1 Fluid Dynamics

This section demonstrates the effectiveness of using complex function theory
for analyzing fluid dynamics in a two-dimensional plane. The primary aim is
to derive the Kutta—Joukowski theorem (see Sect. 7.5.2), which describes
the lift force exerted on a solid material placed in a uniform flow. Before
proceeding, we introduce terminologies and several basic concepts that pertain
to fluid dynamics.

The fundamental quantities that characterize a two-dimensional fluid flow
are velocity v = ue, + ve, and vorticity w = V x v, both of which are
vector-valued functions of the position r. Here, we restrict our attention to
the case of an irrotational (w = 0) and incompressible (V - v = 0) fluid.
The assumption w = V x v allows us to define an appropriate function @(x, y)
such that

v =V, (7.72)
since V x (Vf) = 0 for any analytic function f(x,y) in the z-y plane. The

function @(z,y) defined by (7.72) is called the velocity potential. Further,
our assumption of V- v = 0 implies that

u, oo
or Oy
which in turn suggests the presence of an analytic function ¥(x,y) defined by

ov ov

that satisfies the two-dimensional Laplace equation V2% = 0. Such a function
U(x,y) is called a stream function.
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Remark. The name stream function originates from the fact that the curves
of ¥(x,y) = const. in the z-y plane represent streamline flow. This is shown
by noting that if d¥ = 0, we have

_ov ov

W— —_ —_— = — —
d o dx + 3y dy vdz + udy = 0,

so that da/u = dy/v, which implies that dr is parallel to v.

From (7.72) to (7.73), it follows that the components of the velocity v are
expressed as
oo ov 0P ov
U= —=——", V== ——",
dr Oy dy Ox

This allows us to introduce the concept of a complex velocity potential
f(z) in the complex plane:

f(z) =P(2) +i¥(z) with z =z + iy. (7.74)
Note that since f(z) is analytic,

of _df i

o= o= u—iv=lole™,

or  dz
i.e., the absolute value of the derivative |df/dz| gives the magnitude of the
velocity |v|. Furthermore, the contour integral of f(z) has important physical
implications. Given a closed contour C placed on a two-dimensional flow, we
have

iw=mm+@w»

where

F(C):fgdézéj(udw—kvdy):ﬁv-dr,
Q(C):%Cdd/:ﬁ(udy—vdx):chxdﬂ.

Hence, the integrals I'(C') and Q(C) represent the circulation (or rotation)
and the fluid flow, respectively.

7.5.2 Kutta—Joukowski Theorem

We are now ready to study the Kutta—Joukowski theorem, which describes
the lift force in a two-dimensional flow. The lift force is a component of the
fluid dynamic force that is perpendicular to the flow direction. It is the lift
force that makes it possible for airplanes, helicopters, sail boats, etc. to move
against the gravitational force or water currents.
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Fig. 7.13. Spatial configuration of material placed into a two-dimensional uniform
flow with speed U showing the components F, Fy, of the flow-induced force F acting
on the material

& Kutta—Joukowski theorem:
The lift force F), that acts on a material placed in a uniform flow U in
the z-direction is given by

F,=—pUI(C), (7.75)

where p and I'(C) are the mass density and the circulation of the fluid,
respectively, within a closed contour C' surrounding the material (see
Fig. 7.13).

The lift force is generated in accordance with Bernoulli’s theorem and the
law of conservation of momentum. Both of these principles are used to
explain the mechanism responsible for the occurrence of the lift force in a
uniform flow, which is given by the Blasius formula (see 7.5.3):

F:E?{dez,
2 Jo

which plays a key role in the proof of the Kutta—Joukowski theorem, as shown
below.

Proof (of the Kutta—Joukowski theorem). Assume a uniform flow oriented to
the z-axis. Then the function w = df /dz is analytic and satisfies the relation

lim w = U = const.
Z—00

Hence, w can be expanded at points sufficiently far from the origin:

df
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which implies that

f:Uz+kologz+co+%+§%+-~ (z — 0) (7.77)
and Uk |
w?=U?+ ZO+(/¢§—2UC1)?+--- (z — o0). (7.78)
From (7.77) we have
f fdz = 2miko = I'(C) +iQ(C), (7.79)
C

and substituting (7.78) into the Blasius formula expressed by F = (ip/2)
$o w?dz, we obtain

F=F,+iF,= % -2mi - 2Ukg = —27pUky. (7.80)
Combining (7.79) and (7.80) yields
Fy +iF, = pU(-Q +iT),
ie.,
F,=-pUQ, F,=—pUI. (7.81)

of the two results above, it is the second one regarding Fj that states the
theorem. o

Remark. The first equation in (7.81) indicates that F,, = 0 if Q = 0; i.e. no
force in the direction of the stream is relevant to a material inside the closed
contour C if no source is located interior to C. This is precisely the case for
an ideal flow without any viscosity.

7.5.3 Blasius Formula

We conclude this section by explaining the Blasius formula, which is impor-
tant for the proof of the Kutta—Joukowski theorem discussed above. Consider
a two-dimensional flow of irrotational and incompressible fluid and assume
that a solid material is placed inside a closed contour C' encircling a portion
of the fluid. Apparently, a force F' from the flow is exerted on the material.
Hence, the law of the conservation of momentum within the contour C'
is written as

F—&—j{dG:O,
c

where dG represents the sum of momentums that pass through a line element
ds of the closed contour C' per unit time. It is given by
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dG = pnds + pvv,ds, (7.82)

where p is the fluid pressure, n is a basis vector normal to the contour C, p
is the density of the fluid, and v,, = v - n. The first and second terms on the
right-hand side of (7.82) represent the impulse transmitted to the interior of
C through ds and the volume of fluid passing through ds, respectively. Using
the stream potential ¥, we rewrite as (7.82)

dG = pnds + pvd¥, (7.83)

since d¥ = v,,ds.

In order to obtain the complex-number representation of (7.83), we denote
by dz an infinitesimal vector having length ds and a direction normal to mn.
We then have

dz = i(ng +iny)ds.

when we apply this relation to (7.82), the quantity dG is expressed as

df*  df —df*
dz* 2

dG, +1idGy = —ipdz + p (7.84)

where we consider d¥ to be the imaginary part of df. The pressure p is known
to correlate with f via Bernoulli’s theorem, which is expressed by

’f‘ p df df*

pP=po—3 (7.85)

PO S dz de

where pg is the pressure at a position far from the material (i.e., 2 — 00). It
then follows from (7.84) to (7.85) that

ip df df* wdf* (df . df”
d ( e - ——dz >(7.86)
df

. 2
= —ipodz — % <dz> dz. (7.87)

2dzdz"" " 2 do

G, +idG, = —ippdz + -

Since ¢, dz = 0, we finally obtain

d
F=F,+iF, = 2740(;;) 2, (7.88)

which is known as the Blasius formula.
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Singularity and Continuation

Abstract We devote the first half of this chapter to the essential properties and
classification of singularities, which are nonanalytic points in a complex plane. We
then describe analytic continuation, which is a most important concept from a the-
oretical as well as an applied point of view. Through analytic continuations, we
observe the interesting fact that the functional form of a complex function may
undergo various changes depending on the defining region in the complex plane.

8.1 Singularity

8.1.1 Isolated Singularities

A singularity of a complex function f(z) is any point where it is not analytic.
In particular, the point z = a is called an isolated singularity if and only
if f(z) is analytic in some neighborhood but not at z = a. Most singularities
we have encountered so far in this text were isolated singularities. However,
we will see later that there are singularities that are not isolated.

When z = a is an isolated singularity of f(z), it is classified as follows:

1. A removable singularity if and only if f(z) is finite throughout a neigh-
borhood of z = a, except possibly at z = a itself.

2. A pole of order m (m = 1,2,---) if and only if (z — a)™ f(z) but not
(z —a)™ 1 f(2) is analytic at z = a. In this case, lim,_, |f(2)| = 0o no
matter how z approaches z = a.

3. An essential singularity if and only if the Laurent series of f(z) around
z = a has an infinite number of terms involving negative powers of (z —a).

Remark. There is an alternative definition of a pole: the point z = a is a pole
of mth order of f(z) if and only if 1/f(z) is analytic and has a zero of order
m at z = a.
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The three types of isolated singularities described above can be distinguished
by the degree of expansion of the Laurent series of f(z) being considered. Let
f(2) have an isolated singularity at z = a. Then there is a real number § > 0
such that f(z) is analytic for 0 < |z — a| < ¢ but not for z = a, which means
that f(z) can be represented by the Laurent series

00 M
f(z) = ch(zfa)nJch,n(z_%)n. (8.1)
n=0

n=0

Thus, it suffices to examine the expansion degree M of the principal part, the
second sum in (8.1), in order to determine the type of the isolated singularity
z=a.

Case 1. Removable singularities (M = 0)

In this case, the principal part is absent so that the Laurent series around
z = a reads
fR)=co+alz—a)+ea(z—a)’+--- (z#a).

Observe that lim,_., f(z) = ¢o as is consistent with statement 1 above, which
says that f(z) is finite in a neighborhood of z = a. This kind of singularity
can be eliminated by redefining f(a) as ¢y, which is why we call it remouvable.

Ezxamples Consider the function

fz) =" (8.2)

This yields lim,_.¢ f(2) = 1, but the value of f(0) is not defined. Hence, z = 0
is a removable singularity of (8.2). In a similar sense, the functions
1 1

and — —
z tanz

sinz/z

€

are regarded as analytic at z = 0, since this point is the removable singularity
for each.

Case 2. Isolated poles (M is finite)

The second type of isolated singularity, for which the principal part reads

M
Z c_nh™™ (cop #0, M > 1),

n=1

is called a pole of order M. Order M is the minimum of the integer that
makes the quantity
lim (2 — 20)M f(2)

z2—20

a finite, nonzero complex number.
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Ezamples 1. The function f(z) = 1/sinz has Laurent series valid for 0 <
|z] < m;
L2, T o5, 31 o
sinz z 6 360 15120 ’

from which it follows that it has a simple pole at the origin.
2. The function f(z) = 1/z has a simple pole at z = 0, which is easily seen
by noting that lim, ¢ zf(z) = 1.

Case 3: Essential singularities (M = 00)

The third type of isolated singularity, essential singularity, gives rise to an
infinite principal part.

Ezamples The function f(z) = e'/# has the Laurent series

1 1 1
1/z _ -
€ 71+z+2!z2+3!z3

+...’

which is valid for |z| > 0. Since the principal part is infinite, the function has
essential singularity at z = 0.

Remark. An infinite principal part in the Laurent series implies essential
singularity only when the series is valid for all points in a neighborhood |z —
al < € except z = a. For example, the series

1 1 1
B =yt ey T e

does not mean that z = 1 is an essential singularity of f(z), since the series
converges only if |2 —1| > 1. It actually represents the function f(z) = 1/(2%—
3z 4 2) in the annulus 1 < |z — 1| < R, which evidently has a simple pole at
z=1.

8.1.2 Nonisolated Singularities

As noted earlier, there are other kinds of singular points that are neither
poles nor essential singularities. For example, neither /z nor logz can be
expanded near z = 0 in Laurent series; both of them are discontinuous along
an entire line (say, the negative real axis) so that the singular point z = 0 is
not isolated. Singularities of this kind, called branch points, are discussed
in the next subsection.

Another type of singular behavior of an analytic function occurs when it
possesses an infinite number of isolated singularities converging to some limit
point. Consider, for instance,
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1

1z) = sin(1/2)"

The denominator has simple zeros whenever

z=— (n==41,£2,--+).
nm
The function f(z) has simple poles at these points and the sequence of these
poles converges toward the origin. The origin cannot be regarded as an isolated
singularity because every one of its neighborhoods contains at least one pole
(actually an infinite number of poles).

8.1.3 Weierstrass Theorem for Essential Singularities

The behavior of a function in the neighborhood of an isolated essential sin-
gularity is different from the cases of other isolated singularities such as poles
and removable singularities. Most remarkable is the fact that f(z) can be
made to take any arbitrary complex value by choosing an appropriate path
of z — a. For instance, if z approaches zero along the negative real semiaxis,
then the function f(z) = e'/# yields | f(z)| — 0. However, if z approaches zero
along the positive real semiaxis, then |f(z)| — oo. Finally, if z approaches
zero along the imaginary axis, then |f(z)| remains constant but argf(z) os-
cillates, and so on. The character of a function near an essential singularity is
described by the following theorem:

& Weierstrass theorem:
In any neighborhood of an isolated essential singularity, an analytic
function approaches any given value arbitrarily closely.

Proof We use the contraposition method to prove our theorem. Let z = a
be an isolated essential singularity of f(z). We assume for the moment that
for |z —a| < ¢, |f(z) — 7| with a given complex number v does not become
arbitrarily small. Then, the function [f(z) —~]~! is bounded in the region of
|z — a] < € so that it is possible to find a constant M such that

‘<M for |z —a| <e.

’ 1
f(z2) =~
Hence, [f(z) —~]~! is analytic for |z — a| < & (or at worst has a removable
singularity) and can be expanded by

1 2 PR
=y ~RhE Ak @)
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If by # 0, then
lim o by so that lim f(z) =~ + l
sma f(z) — o ma bo

This means that z = a is not a singularity of f(z), which contradicts our

assumption. Otherwise, if by = 0, we have

1
(z = a)k bk + bpia (2 —a) + - -]

fz) =7+ ,
where by, is the first nonzero coefficient in the series (8.3). This clearly shows
that z = a is a pole of f(z) of kth degree, which again is inconsistent with
our assumption. Therefore, we conclude that |f(z) — 7| with a given v can be
arbitrarily small in the vicinity of an essential singularity z = a. Furthermore,
since 7 is arbitrary, the function f(z) approaches any given complex value
arbitrarily closely. &

Remark. The above theorem becomes invalid if the point at infinity is taken
into account; the point at infinity z = oo is defined as the point Z that is
mapped onto the origin z = 0 by the transformation zZ = 1/z. For instance, the
function f(z) = e® has an essential singularity at z = oo but never approaches
zero there.

8.1.4 Rational Functions

In comparisons with the previous case, the behavior of an analytic function
near a pole is easy to describe. We now derive the following result:

& Theorem:

A rational function has no singularities other than poles. Conversely,
an analytic function that has no singularities other than poles is neces-
sarily a rational function.

A rational function f(z) is of the form

p(z)
Fe) =10 8.4
) q(2) (8.4)
where
p(z) =y +a12—|—a222 +o a2
and

Q(Z) = ﬁo+ﬂ12—|—ﬂ2z2 4o Bp2™.

Observe that the polynomials p(z) and ¢(z) are analytic at all finite points on
the complex plane.



238 8 Singularity and Continuation

Proof In what follows, we assume that p(z) and ¢(z) have no common zeros;
if they do have a common zero at z = zq, it is always possible to write f(z) in
(8.4) as the quotient of two polynomials with no common zeros by canceling
a suitable number of the (z — zp)-factors.

Obviously, the only possible singularities of f(z) are situated at the zeros
of ¢(z). Since the zeros of p(z) do not coincide with those of ¢(z), f(z) neces-
sarily diverges at the zeros of ¢(z). Such points can be poles but not essential
singularities in view of the Weierstrass theorem given in Sect. 8.1.3. We have
thus proved that all singularities of rational functions f(z) are necessarily
poles.

To prove the converse, suppose that all the singularities of an analytic
function f(z) are poles at the points aj, as,- - ,a,. The orders of these poles
are denoted by mq,mo,- - ,m,, respectively. In the vicinity of the point a,,
the function f(z) has a Laurent series expansion of the form

) c(l/l) o o)
—- "My .. = v _ n
1) (z —a,)™ e (z —ay) * Z e (2= @),

n=0

where the superscripts () on ¢ indicate that they are the coefficients that
belong to the vth poles, z = a,. Denote the principal part by

(v) (v)
- _%m, LS
gV(Z) - (Z _ a,,)mv + (Z — aV) (85)

and consider the expression

h(z) = f(2) = g1(2) — g2(2) — - — gu(2).

Since f(z) — g,(2) is analytic at z = a,, and g,(z) is analytic everywhere
except at z = a,, it follows that h(z) is analytic at all points of the complex
plane, including the point at infinity. In view of Liouville’s theorem such a
function is necessarily a constant. Thus we have identically h(z) = 7o, whence

f(z) =7+ Zgu(z)a (86)

which implies that f(z) can be brought into the form (8.4). This completes
the proof of our theorem. &

Exercises

1. Find the poles and their order of the following functions:

sin(z+ 1) sin z

(D) f(2) =

(@) £(z) = =5 .
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Solution: (a) Clearly, lim, .o 22 f(z) = oo and lim, . 23 f(2) =
sin(1) # 0. Hence, f has a third-order pole at z = 0 arising from
the factor 1/23. (b) Since lim, .o 23 f(z) = 0, the pole of f(z) is
not a third-order pole. Instead, noting the asymptotic behavior of
sin z near z = 0, we obtain

lim 2% f(z) = lim 2? %

z—0 z—0 2'3

=1.

Hence, f(z) has a second-order pole at z =0. &

2. Show that a function f(z) cannot be bounded in the neighborhood of
its isolated singular point z = a.

Solution:  Use the contraposition method; if |f(z)] < M for
|z —a| < r, then the expansion coefficients read

|C—n| =

. fc (¢ — @)™ F(Q)dC| < Mr™ for amy n,

where C' is the circle given by |z — a| = r. Since r may be taken
as small as desired, we have

1 =C_g="-=0,

which means that the Laurent series reduces to a Taylor series.
Hence, f(z) should be analytic at z = a, which contradicts the
assumption that z = a is a singular point. &

3. Let both f(z) and g(z) be analytic in the vicinity of z = a and have a
zero of mth order at z = a. Prove that

G 1
) @’ =0

This result is called I’ Hopital’s rule.
Solution: In the vicinity of z = a, we have

m [ £ (a)

(m+1)a
fe) =G -y [F W g (o )

(m+1)!

L F )
(m+2)!

+(z_a) + e,

and we also have a form similar to g(z). These expressions imme-
diately yield the desired equation (8.7). &

4. Prove that if f(z) has an essential singularity at z = a, 1/f(2) also
has an essential singularity.

Solution: Suppose that f has an essential singularity at z = a
but that 1/f does not. If this is true, 1/f will at most have a pole
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there (of order N, for instance) and is expressed in terms of the

series as
1 = .
? - Z bnh .
n=—N

Rewrite this to obtain
hN
Zﬁ:o bm—Nh™

Note that the denominator > b, nyh" is analytic within C, and
thus the fraction 1/ > by, h™ is as well. As a result, the function
f would be expanded into a power series in h starting with A";
this result contradicts our assumption that f(z) has an essential
singularity at z = a. Therefore, wherever f(z) has an essential
singularity, 1/f also necessarily has one. &

f=

Remark. The above result sounds intriguing when compared with the behavior
of an f(z) that has a pole. If f(z) has a pole of order N at z = a, 1/ f obviously
has no pole but does have a zero of order N; i.e., 1/f o (z — a)V.

8.2 Multivaluedness

8.2.1 Multivalued Functions

Up to this point, our concern has been limited to single-valued functions, i.e.,
functions whose values are uniquely specified once z is given. When we con-
sider multivalued functions, many important theorems must be reformulated.

The necessary concepts are best illustrated by considering the behavior of
the function f(z) = 21/2 in a graphical manner. Figure 8.1 gives a contour of a

Y \ U

v

Fig. 8.1. Mapping of a circle on the z-plane onto an upper-half circle on the w-plane
through f(z) = z'/?
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unit circle @ — b on the z-plane. Through the transformation w = f(z) = 21/2,

the circle is mapped onto a semicircle A — B on the w-plane such that

z=1 — = ]_7
z=i=¢e"? = = ( 7rz/2) _ i/t
s— 1= ( ,”)1/2: i,
i o\ 1/2 )
2= —q = e37r1/2 _ w = (637rz/2) _ €3Trz/4.

Of importance is the fact that the images of the points a and b, i.e., A and B,
respectively, are not equal but are distinct on the w-plane. This suggests that
the value of z'/2 for z = 1 is not uniquely determined. Furthermore, a similar
phenomenon occurs for any circular contour a — b with an arbitrarily large
(or small) radius. We thus see that the function f(z) = z'/? is multivalued,
at least along the positive real axis; one point on the positive real axis of the
z-plane is associated with two distinct points on the w-plane.

As a matter of fact, the multivaluedness of the function f(z) = 2'/2 noted
above occurs at all points on the whole z-plane (except at the origin). To see
this, we observe again that the circular contour a — b may have any radius.
As a result, all the points on the z-plane are correlated with only half of the
points on the w-plane, those for which Im [w] = v > 0. The remaining values
of w are generated if a second circuit a — b is made. Namely, the values of
w with v < 0 will be correlated with those values of z whose arguments lie
between 27 and 47. As a consequence, all values for z'/2 represented by on
the w-plane may be divided into two independent sets: the set of values of w
generated on the first circuit of the z-plane 0 < ¢ < 27 and those generated
on the second circuit 27 < ¢ < 4m. These two independent sets of values for
21/2 are called the branches of z!/2.

The concept of branch allows us to apply the theory of analytic functions
to many-valued functions, where each branch is defined as a single-valued
continuous function throughout its region of definition.

8.2.2 Riemann Surfaces

For the case z'/2, the notion that the regions 0 < ¢ < 27 and 27 < ¢ < 47
correspond to two different regions of the w-plane is awkward geometrically,
since each of these two regions covers the z-plane completely. To re-establish
the single-valuedness and continuity of f(z), it is desirable to give separate
geometric meanings to two z-plane regions. This is achieved through the use
of the notion of Riemann surfaces.

A Riemann surface is an ingenious device for representing both branches
by means of a single continuous mapping. Suppose that two separate z-planes
are cut along the positive real semiaxis from +oo to 0 (see Fig. 8.2), and that
the planes are superimposed on each other but retain their separate identities.
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Z =)

Fig. 8.2. A Riemann surface composed of two separated z-planes

Now suppose that the first quadrant of the upper sheet is joined along the

cut

to the fourth quadrant of the lower sheet to form a continuous surface. It

is now possible to start a curve C' in the first quadrant of the upper sheet, go
around the origin, and cross the positive real semiaxis into the first quadrant
of the lower sheet in a continuous motion. The curve can be continued on the
lower sheet around the origin into the first quadrant of the lower sheet. This
process of cutting and cross-joining two planes leads to the formation of a
Riemann surface, which is thought of as a single continuous surface formed of
two Riemann sheets.

Several important remarks are in order.

. According to this model, the positive real semiaxis appears as a line where

all four edges of our cuts meet. However, the Riemann surface has no
such property. This results in the line between the first quadrant of the
upper sheet and the fourth quadrant of the lower sheet being considered
distinct from the line between the first quadrant of the lower sheet and the
fourth quadrant of the upper one. There are two real positive semiaxes on
the Riemann surface just as there are two real negative semiaxes. Hence,
the entire Riemann surface is mapped one-to-one onto the w-plane. (The
origin z = 0 belongs to neither branch since the polar angle 6 is not defined
for z =0.)

. The splitting of a multivalued function into branches is arbitrary to a

great extent. For instance, we can define the following two functions, both
of which may be treated as branches of f(z) = /z:

ret?/? for 0<6<m,

BranchA :  fa(z) = 4
Vre02m/2 for  _r < <0.

Vre02m/2 for 0 <6 <,

BranchB : fp(z) = )
(=) {\ﬁezg/2 for —-wT<6<0.

Note that branch A is continuous on the negative real semiaxis but is
discontinuous on the positive real semiaxis (so is branch B). These two
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branches together, constitute, the double-valued function f(z) = /z, and
this representation is no better and no worse than the previous one.

3. The above-mentioned technique can be extended to other multivalued
functions that require more than two Riemann sheets (for instance, f(z) =
&z requires three). There are functions requiring an infinite number of
Riemann sheets, such as f(z) = z® with an irrational a.

8.2.3 Branch Point and Branch Cut

We so back to the behavior of the multivalued function w = f(z) = 2'/2 to
introduce other important concepts referred to as branch point and branch
cut. Let us consider a certain closed curve C without self-intersections in the
z-plane. Specify a point zy to which we assign a definite value of the argument
6o. Through the mapping w = 2z'/2, we will find two distinct points: wq(zo)
and w(2g).

In what follows, we examine the variation of the functions wq(z) and w1 (2)
as the point z moves continuously along the curve C. Since the argument of
the point z on the curve C' varies continuously, the functions wg(z) and wq(z)
are continuous functions of z on the curve C.

Here, two different cases are possible. In the first case, the curve C' does
not contain the point z = 0 within it. Then, after traveling the curve C, the
argument of the point zg returns to the original value arg zy = 6y. Hence, the
values of the functions wg(z) and wq(z) are also equal to their original values
at the point z = z( after traveling the curve C. Thus, in this case, two distinct
single-valued functions of the complex variable z are defined on C:

wo = /2602 and w, = /26120427

Obviously, if the domain D of the z-plane has the property that any closed
curve in the domain does not contain the point z = 0, then two distinct single-
valued continuous functions, wy(z) and wy(z), are defined in D. We call the
functions wo(z) and w (z) branches of the multivalued function w(z) = z'/2,

In the second case, the curve C' contains the point z = 0 within it. Then,
after traversing C' in the positive direction, the value of the argument of the
point zg does not return to the original value 6y but changes by 27 as expressed
by

arg zg = 6y + 27.

Therefore, as a result of their continuous variation after traversing the curve
C, the values of the functions wp(z) and w;(z) at the point zy are no longer
be equal to the original values. More precisely, we obtain

i

™ and w1 (20) = wi(z0)e'™,

11)0(20) = wo(Zo)e
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which indicate that the function wg(z) goes into the function wy(z) and vice
versa. This recurrence phenomenon stems from the fact that z = 0 is the
branch point of the multivalued function f(z) = z/2. A formal definition of
branch point is given below.

& Branch point:

Suppose that several of branches of f(z) are analytic in the neighborhood
of z = a but not at z = a. Then, the point z = a is a branch point if and
only if f(z) passes from one of these branches to another when z moves
along a closed circuit around z = a.

Remark. The point at infinity, z = oo, is a branch of f(z) if and only if the
origin is a branch point of f(1/z).

It is important to note that the branch points for a given multivalued function,
always occur pairwise so that they are connected by a simple curve called the
branch cut (cut or branch line). Branch cuts bound the regions within
which the individual single-valued branches are defined. For instance, in the
case of f(z) = 21/2 the branch cut ran from the branch point at z = 0 to
another branch point at z = oo along the positive real axis. It should be
emphasized here that any curve joining the origin (z = 0) and the point of
infinity (z = oo) would have done just as well. For example, we could have
used the negative real axis as the branch cut, for which the regions

—nm<¢o<m and W< P <37W

(instead of 0 < ¢ < 27 and 2w < ¢ < 47) serve as the defining regions for
the first and second branch. On the w-plane, these two would correspond to
Re v > 0 and v < 0, respectively. We therefore may choose the branch cut
that is most convenient for the problem at hand.

Remark. The choice of branches and branch cuts for a given multivalued func-
tion is not unique; however, the branch points and the number of branches
are uniquely determined once a function is given.

Exercises

1. Examine the multivaluedness of a logarithm function In z.
Solution: Expressing z in polar form, Inz = In (rei‘f’) = Inr+igp,
and changing ¢ by 27k results in

Inz(r,¢ +27k) =lnr+i(¢p+2rk) =Inz(r,¢)+ 2mik. (8.8)
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It follows from (8.8) that there is no nonzero value of k for which
Inz(r, ¢ + 27k) and In z(r, ¢) are equal. Therefore, the logarithm
function is an infinite-valued function. &

2. Evaluate loge, log(—1), log(1 + i) according to the expression (8.8).
Solution: loge = log|e| +iarge = 1+ 2ni,
log(—1) =log| — 1| +iarg(—1) = (2n + 1)mi,
log(1+1i) =log |1 +i| +iarg(l+14) = 22 + (2n+ L)mi. &

3. Evaluate 1 and i* according to the definition of power functions: 2% =
€182 where z(# 0) and a are complex numbers.

Solution:
1t = ¢t logl _ 614277,71'1 — 6277,71"
it = etilogi — gi(2nt3)mi _ (2n—3)m &

4. Show that a power function z”/" with an irreducible rational number
m/n (n > 2) is an n-valued function.
Solution: The multiple values of z(r, ¢)™/™ = r™/me!m®/™ are
found by varying the integer k in the expression:

Z(T’,¢ + 2’/Tk)m/n _ Tm/neimd:/nei%rkm/n _ ei27rkm/nz(r7 ¢)m/n

Substituting k = n yields
z(r, o+ 27Tn)m/n = 2™ (7, gb)m/" = z(r, gi))m/n,

wherein e??™™ = 1 for arbitrary m € IN. Hence, all multiple values
of z™/™ at a given z are found with a value of k in the range
0 < k < n—1. Since there are n different values of k in this range,
2™/ is an n-valued function. &

8.3 Analytic Continuation

8.3.1 Continuation by Taylor Series

It is often the case that a complex function is defined only in a limited region
in the complex plane. For instance, a series representation of a function is of
use only within its radius of convergence, but provides no direct information
about the function outside this radius of convergence. An illustrative example
is a function f(z) defined by

f)=14z+22+---. (8.9)

Obviously, this function is identified with 1/(1 — 2) for |z| < 1, whereas it
diverges for |z| > 1 and thus is no longer equivalent to 1/(1 — z). Nevertheless,
a sophisticated technique makes it possible to identify the function f(z) given
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in (8.9) with 1/(1 — z) even for the region |z| > 1. This technique, by which
the defined region of a function is extended to an ‘uncultivated’ region, is
called analytic continuation. The resultant function may often be defined
by sequential continuation over the entire complex plane without reference to
the original region of definition.

To see an actual process of analytic continuation, we suppose that a func-
tion f is given as a power series around z = 0, with a radius of convergence
R and a singular point of f being on the circle of convergence. We show
that it is possible to extend the function outside R. We first note that at any
point z = a within the circle (|z| < R), we can evaluate not only the value of
the series but all its derivatives at that point as well because the function f
is analytic and the series representation has the same radius of convergence.
Therefore, we can obtain a Taylor series of f(z) around z = a as

> f(n) (g
) => / '( )(z —a)™. (8.10)
n=0

n:

The radius of convergence of this series is the distance to the nearest singular
point, say z = zs (see Fig. 8.3a). The resultant circle of convergence with
radius Ry = |zs — 2o/ is indicated by the solid circle in the figure. One may
setup this process using a new point, e.g., z = b, not necessarily within the
original circle of convergence (see Fig. 8.3b), about which a new series such as
(8.10) can be set up (see Fig. 8.3¢). Continuing on in this way, it is apparently
possible by means of such a series of overlapping circles to obtain values for
f for every point in the complex plane excluding the singular points.
Our current discussion can be summarized as follows:

1. Let f(2) be defined by its Taylor series expansion around z = a within
some circle |z —a| = r.

2. Specify a certain point z = b within the circle and evaluate f(b), f/(b), -
to obtain a Taylor series of f(z) around z = b.

3. Observe that the latter series converges within a circle |z — b| = »/ that
intersects the first circle but may contain a region that is not within the
first circle.

4. Specify again another point z = ¢ within the circle |z — b| = r’ and repeat
the process described above.

8.3.2 Function Elements

We know that the term ‘analytic continuation’ refers to a method that allows
us to extend the defining region of a complex function. Alternatively, this term
can refer to the function that is newly found through analytic continuation of
some other function. The formal definition is given below.
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Fig. 8.3. Illustration of an analytic continuation procedure

#® Analytic continuation:

Given a single-valued analytic function f;(z) defined on a region D, the
analytic function f5(z) defined on Dy is called an analytic continuation
of f1(z) to Dy if and only if the intersection D; N Ds contains a simply
connected open region where f1(z) = fa(2).

If the two analytic functions f1(z) and fo(z) defined on D; and Ds, respec-
tively, are analytic continuations of one another, then it is evident that an
analytic function f(z) can be defined on Dy U Dy by setting

fl(z) in Dl,
f(Z) - {fg(z) iIl DQ.

Here, f1 and fy are called function elements of f. More generally, we can
consider a sequence of function elements (f1, fo, -, fn) such that fi is an
analytic continuation of fr_1. The elements of such a sequence are called
analytic continuations of each other. Relevant terminology for this point
is given below.
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& General analytic function:

A general analytic function f is a nonvoid collection of function elements
fr in which any two elements are analytic continuations of each other by
way of a chain whose links are members of f.

& Complete analytic function:
A complete analytic function f is a general analytic function that con-
tains all the analytic continuations of any one of its elements.

A complete analytic function is evidently maximal in the sense that it can-
not be further extended. Moreover, it is clear that every function element be-
longs to a unique complete analytic function. Incomplete general analytic
functions are more arbitrary, and there are many cases in which two different
collections of function elements should be regarded as defining the same func-
tion. For instance, a single-valued function f(z) defined in D can be identified
either with the collection that consists of the single function element defined
on D or with the collection of all function elements defined on D’ C D.

FEzamples 1. Let us consider the functions
o0
filz) = Zz" defined on |z| < 1 (8.11)
n=0
and

[e%e] 3 n+1 2 n
fa(z) = Z (5) (z + 3) defined on

n=0

2 )
1< 5. 8.12
z+3’ 3 (8.12)

Both series converge to 1/(1 — z); Particularly the latter converges since

o35 ()] = g

n=0

Therefore, the two functions represent the same function f(z) = 1/(1—z)
in the two overlapping regions (see Fig. 8.4), although they have different
series representations. In this context, we can write

) fi(z)  when for z € Dy, D; ={z:|z| < 1},
Z) =
f2(z)  when for z € Dy, Dy = {z: }z+§’ < 3}

2. Another illustrative example is given by

fi(z) = / e *'dt defined on Rez > 0 (8.13)
0
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y

Fig. 8.4. Both functions fi(z) in (8.11) and f2(a) in (8.12) represent the same
function f(z) = 1/(1 — z) in the overlapping region Di N Dy

and

fa(2) :iz (Z+Z> defined on |z 47| < 1.
n=0 v

Observe that each f; and fs reads 1/z for the respective defining region.

Thus, we have

1 fi(z) for z € Dy, Dy ={z:Rez> 0},
fa(z) for z € Dy, Dy ={z:|z+1i| <1}

z

The two functions are analytic continuations of one another, and f(z) =
1/z is the analytic continuation of both f; and fs for all z except z = 0.

Remark. In some cases, it is impossible to extend the function outside of a
finite region because an infinite number of singularities are located densely on
the boundary of the region. In that event, the boundary of this region is called
the natural boundary of the function and the region within this boundary
is called the region of the existence of the function.
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8.3.3 Uniqueness Theorem

Having introduced the concept of analytic continuation, we may ask a question
as to whether the function resulting from an analytic continuation process
is uniquely determined, independent of the continuing path; i.e., whether a
function that is continued along two different routes from one area to another
will have the same value in the final area. We now attempt to answer this
question by examining the theorem below.

& Uniqueness theorem:

Let f1(z) and f2(2z) be analytic within a region D. If the two functions
coincide in the neighborhood of a point z € D, then they coincide through-
out D.

Proof The theorem to be proven is rewritten in the following statement: If
both f(z) and g(z) are analytic at zo and if f(z,) = g(z,) withn =1,2,--- at
points z, that satisfy lim, .o 2, = 20 but z, # 29 for all n, then f(z) = g(2)
throughout D. We now prove it.

Let h(z) = f(z)—g(z). Here, f and g are assumed to satisfy the conditions
given in the statement above, so that h(z,) = 0 for all n and h(z) is analytic
at zp. Owing to the analyticity of h(z) at zg, we have the expansion

h(z) :a0+a1(2—20)+a2(z—z0)2+... ,

which converges in a certain circle around zp. Since h(z) is continuous at zo,
we have

h(zo) = nlin;o h(zn) =0,

which means that the coefficient ag is zero. Then, since h'(z) is also continuous
at zp, we set
h'(z0) = lim h'(z,) =0,
n—oo

which means that a; = 0. Continuing in this fashion, we find successively
that all the coefficients vanish. In its circle of convergence, the function h(z)
is therefore identically zero. This completes the proof. o

This remarkable theorem demonstrates the strong correlation between the
behaviors of analytic functions on different parts of the complex plane. For
example, if two functions agree in value over a small arc (arbitrarily small as
long as it is not a point), then they are identical in their common region of
analyticity.

8.3.4 Conservation of Functional Equations

An important consequence of the uniqueness theorem is the so-called principle
of the conservation of a functional equation.
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& Conservation of functional equations:

Let F(p,q,r) be an analytic function for all values of the three vari-
ables p, ¢, 7, and let f(z) and g(z) be analytic functions of z. If a relation
F[f(2),9(2), 2] = 0 between function elements f(z) and g(z) holds on a do-
main, then this relation is also true for all analytic continuations of these
function elements.

Remark. In plain words, this theorem states that analytic continuations of f(z)
satisfy every functional (and differential) equation satisfied by the original

f(2).

This theorem can easily be generalized to cases of functional equations involv-
ing more than two functions. We illustrate this by two examples.

Ezamples 1. From elementary trigonometry, we know that the real function
sin x has the additional theorem

sin(z + «) = sin z cos u + cos x sin u,

where v is an arbitrary real value. Since sin z, cos z, and sin(z + u) are
analytic for all finite values of z, and since the relation

sin(z + u) = sin z cos u + cos z sin u

is satisfied if z is any point on the real axis, it follows by analytic contin-
uation that the same relation must hold for all values of z. If we report
the same argument with respect to the real variable u, we find that u may
be replaced by a complex variable w without invalidating the relation in
question. Hence, the addition theorem of the function sin z is true for
arbitrary complex values of z and w.

2. Another important example is afforded by functions satisfying differential
equations. To take a simple case, we consider the function

f(z) =log(1+ z).
This is represented for |z| < 1 by the power series

2 3

) =25+ 5= (8.14)

which yields
1

142

ffR)=1—z2422-23+...=

In this context, the identity



252 8 Singularity and Continuation

1

FE) = s

(8.15)

appears to be valid for |z| < 1. However, it follows that the identity (8.15)
must hold for all analytic continuations of the power series (8.14).

8.3.5 Continuation Around a Branch Point

The uniqueness theorem given in Sect. 8.3.3 also gives us the following corol-
lary:

& Theorem:

If Dy and D5 are regions into which f(z) has been continued from D,
yielding the corresponding functions f; and fs, and if D3 = Dy N Dy also
overlaps D, then f; = fs throughout Ds.

It is important to note that the validity of this theorem is due to the condition
that D3 and D have a common region. If this condition is not satisfied, the
uniqueness of analytic continuation may break down. Instead, one can say: If
analytic continuation of a function f along two different routes from zy to z;
yields two different values at z1, then f(z) must have a certain kind of singu-
larity between the two routes. This seems obvious by recalling the fact that
the radius of convergence of a power series extends up to the next singularity
of the function; if there were no singularities between the two routes, then it
would be possible to fill in the region between the two routes by means of an-
alytic continuation based on the power series. Then we would obtain sufficient
overlapping so that the uniqueness theorem would be satisfied. In that event
f(21) for the two different routes would be identical, in contradiction to our
hypothesis. There must therefore be a singularity between the two routes.

Note that the last discussion does not state that different values must be
obtained if there is any kind of singularity between the two routes. It must be
a particular type of singularity to cause a discrepancy, and we call it a branch
point, as we introduced earlier. An analytic function involving branch points
is said to be multivalued and the various possible sets of values generated by
the process of analytic continuation are known as branches. Intuitively, all
the possible values of a function at a given point may be obtained by the
process of analytic continuation if one winds about the branch point as many
times as necessary.

8.3.6 Natural Boundaries

In all the examples considered so far, the singularities were isolated points. It
is, however, easy to construct functions for which this is not the case. Consider,
say, the function
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1
1) = sin(1/2)"
The denominator vanishes for 1/z = nr with an integer n. Hence, the points
z = (1/nm) are singular points of f(z), but are clearly isolated in the vicinity
of the origin. It is further possible for the singular points of a function to fill
a whole arc of a continuous curve; in this case, we speak of a singular line
of the function.

Particularly interesting is a situation in which a function f(z) has a closed
singular line C. In this case, it is obviously impossible to continue f(z)
analytically across C. The entire domain of definition of f(z) is therefore
the interior of C, and we say that C' is a natural boundary of f(z).

Such an occurrence is not as unusual as it may seem. Consider, for instance,
the analytic function f(z) defined by the power series

f(z):z+z2+z4+28+~~2222n~ (8.16)
n=0

By the root test given in Sect. 2.4.3, the circle of convergence of this series
turns out to be |z| < 1. Thus f(z) must have at least one singularity on |z| = 1.
For the sake of simplicity, we assume that this singularity is situated at the
point z = 1; a different location will cause a minor change in the argument.
From the definition of f(z), it follows that

f(zQ):z2+z4+zS+-~-=i22nZf(z)_z~
n=1

By the principle of conservation (see Sect. 8.3.4), the functional equation

fz) =2+ f(z) (8.17)

is true for all analytic continuations of f(z). Observe that (8.17) gives
F(z) =14 22f'(2),

which means that f(z) cannot have a derivative at z = —1 since from hypoth-
esis f(1) does not exist. Thus, z = —1 is also a singular point of f(z). In the
same way, from the relation

f2) =24 f(2*) =2+ 2+ f(z*)

it follows that the points z for which z* = 1 are singularities of f(z).
Continuing in this fashion, we conclude that all points z for which 22" =1
are singularities of f(z). But these are the points e2™/(2") that divide the
circumference |z| = 1 into 2" equal parts. Since, for n — oo, all points on
|z| = 1 are limits of these points and since the limit point of singular points
is also a singularity, it follows that all points on |z| = 1 are singular points of
f(2). We have thus proven that the unit circle is the natural boundary of the
analytic function (8.16).
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8.3.7 Technique of Analytic Continuations

The uniqueness theorem is the fundamental theorem in the theory of analytic
continuation. However, in practice, the most relevant method would be one
that tells us whether a function f5 is the analytic continuation of a function
fi.

Let us describe two possible methods of analytic continuation: The first is
based on the Schwarz principle of reflection, which essentially makes use
of the functional relation f(z*) = f(z)".

& Schwarz principle of reflection:
If f(z) is analytic within a region D intersected by the real axis and is
real on the real axis, then we have f(2*) = f(2)".

Proof Expand f(z) in a Taylor series about a point a on the real axis. The
coefficients of the Taylor series are real by virtue of the hypothesis that f(z)
is real on the real axis. Hence, we have

f2) =) en(z—a)", (8.18)
n
where ¢, is real. Then

f(2) =) ez —a)" = f(z), (8.19)

proving the theorem. &

The above theorem holds for any point within the circle of convergence of
the power series. By the methods of analytic continuation, therefore, it may
be extended to include any nonsingular point conjugate to a point in D. As a
result, the function in question can be continued from a region above the real
axis to a region below.

A second method employs explicit functional relations such as addition
formulas or recurrence relations. A simple example is provided by the
addition formula

fz+21) = f(2)f(z1).

If f were known only in a given region, it would be continued outside that
region to any point given by the addition of the coordinates of any two points
within the region. A less trivial example occurs in the theory of gamma
functions. The gamma function is defined by the integral
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oo
I'(z) :/O e ft*at. (8.20)

This integral converges only for Re z > 0, so that it defines I'(z) for only
the right half of the complex plane. From (8.20), one may readily derive (by
integrating by parts) a functional relationship between I'(z) and I'(z + 1):

2I'(z)=T(z+1). (8.21)

We may now use (8.21) to continue I'(z) into the Re z < 0 part of the complex
plane. As first, we assume that I'(z) is known for > 0. Then using recurrence
relation (8.21), the points in the strip —1/2 < & < 1/2 can be computed in
terms of the values of I'(z) for « > 0. The function so defined and the original
function have an overlapping region of convergence so that it is the analytic
continuation into the negative x-region.

8.3.8 The Method of Moment
Suppose that we are given a power series f(z) = > - a,2" where the co-

efficients a,, are the moments of a given continuous function. For example,
suppose that there exists a continuous function g on [0, 1] such that

1
an:/ g(t)t"dt.
0

Then - . - .
=3 [ atorar] -3 [ aoral,

and interchanging the order of summation and integration, we find that

1= [ Lz_%g(t)(zt)"] at= | A0y,

(The interchange of summation and integration is easy to justify if |z] < 1.)
Moreover, this integral form serves to define an analytic extension of the
original power series.

Ezxamples Consider

J@=3 5 (<. (8.22)

Since
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we set g(t) =1 to obtain

1
dt
z) = — for |z] < 1.
fe)= | 1o for 14

The integral above is the analytic continuation of the original representation
(8.22), so that the latter is analytic throughout the complex plane except for
the semi-infinite line [1,00). [In fact, the analytic continuation has a discon-
tinuity at every point of the interval [1,00).]

Exercises

Nk+1
ng

> 1. Prove that the circle of

oo
1. S = "k with lim inf
uppose f(z) kZ_OCkZ with limin
convergence of f(z) above is a natural boundary for f.

Solution: Since the result is independent of ¢i, we may assume
without loss of generality that the radius of convergence is 1. In
addition, neglecting finitely many terms if necessary, we assume
that for some 6 > 0 and for all k, ngy1/nk = 1+ 6. Finally,
it suffices to show that f is singular at the point z = 1. The
same result applied to the series Y7 c(2e )" shows that f
is singular at any point z = e?.

Choose an integer m > 0 such that (m +1)/m < 1+ 6 and
consider the power series g(w) obtained by setting z = (w™ +
w™F1) /2. We then find that

g(w) = f (W)

2
o mno 4 @wmntﬂrl 4ot Ciwmno+n0
2n0 2n0 20
C1 C1Mq C1
+2lemn1 +271 mn1+1+...+277wmn1+n1 4+,

Note that in this expression no two terms involve the same power
of w, since the inequality mngy1 > mny + ni holds whenever
N /ne > (m+1)/m. If jw| < 1, then (Jw|™ + Jw|™T1)/2 < 1,
and since f(z) is absolutely convergent for |z| < 1, the series
oo lerl[(Jw]™ + |w]™*+1) /2] converges. Hence, for |w| < 1,
g(w) is absolutely convergent. On the other hand, if we take w
real and greater than 1, then (w™ + w™%1)/2 > 1, so the series
S reo crl(w™ 4 w™ ) /2] diverges. Note, though, that the jth
partial sums s; of the above series are exactly the n;(m + 1)th
partial sums of the power series of g. Hence, the series for g(w)
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diverges and g, too, has a radius of convergence of 1. This means
that g(w) must have a singularity at some point wy with |wg| = 1.
If wy # 1, then [(w™ + w™T1)/2| < 1 and since f is analytic in
|z| < 1, g is analytic at wp. Thus g must have a singularity at
wp = 1 and since g(w) = fl(w™ + w™1)/2], f(z) must have a
singularity at z = 1. &

& n 0 n
2. Define an analytic continuation of: (i) E T (i) E o
n=1 n=0
Solution:

(i) Since (1/3)/ e "~2/3dt, we have

1
ni/3
— 2" _ —2/3
o= (5) [ e
n=1

1 z

() e

which is analytic outside of the interval [1, 00).

Y |
(i) Since 1 e " sintdt,
n

%0 ot gin ¢
/ “N"sintdt = / ¢ s dt,
n2 +1 0 € —z

which is analytic outside of the interval [1,00). &

3. Suppose that f is bounded and analytic in Imz > 0 and real on the real
axis. Prove that f is constant.
Solution: By the Schwarz reflection principle, f can be extended
to the entire plane and would then be a bounded entire function.
Hence, f is constant. o

4. Given an entire function that is real on the real axis and imaginary on
the imaginary axis, prove that it is an odd function; i.e., f(z) = —f(—=2).
Solution: Set f(z) = f(z,y) = u(z + iy) + v(z + iy). The
Schwarz reflection principle implies that f(z*) = f(z — iy) =
u(z—iy)+iv(x —iy) = u(x+iy) —iv(z+iy) = —f(z). In a similar
way, we have f(—z) = f(—x —iy) = u(—z — iy) + iv(—x —iy) =
—ue +iy) — oo +iy) = —1(2). &
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Contour Integrals

Abstract In this chapter, we show that singularities do not interfere with the anal-
ysis of complex functions but are useful in extracting complex integrals along closed
contours. This utility of singularities is based on the residue theorem (Sect. 9.1.1),
argument principle (Sect. 9.4), and principal value integrals (Sect. 9.5.1), all of which
correlate the nature of singularities within and/or on the contour with the relevant
complex integrals.

9.1 Calculus of Residues

9.1.1 Residue Theorem

In the preceding two chapters, we provided the theoretical bases of complex
functions. This chapter deals with more practical matters that are relevant to
computations of contour integrations on a complex plane. The theorem below
is central to the development of this topic.

& Residue theorem:
If a function f(z) is analytic everywhere within a closed contour C' except
at a finite number of poles, its contour integral along C' yields

72 f(z)dz = QWiZRes(f, a;). (9.1)

Here, Res(f, a;) is called the residue of f(z) at the pole z = a;. When the
pole is mth order, it reads

1 ) d(m—l)

Res(f, O,j) = m zligzlj W [(Z — aj)mf(z>] . (92)
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Once the residue is evaluated, the integral § f(z)dz around the contour C
surrounding the pole z = a can be determined by the above theorem. Notably,
this theorem enables us to evaluate various kinds of integrals of real functions
that are unfeasible by means of elementary calculus.

Before demonstrating the utility of the residue theorem, we present a short
review of the nature of residues. Originally, the residue of f(z) is defined in
association with a particular coeflicient of the Laurent series expansion. We
know that f(z) around its pole at z = a may be expressed by a Laurent series
expansion such as

o0

_ n _ 1 f(z)
fla+h) = Z cnh™, Cn_%rijéc(z—a)""‘ldz'

n=—oo
Then, the specific coefficient

1

C_1 = -
211 C

f(z)dz (9.3)
is called the residue of f(z) at z = a. In fact, the result (9.3) immediately
reduces to the form of (9.1) as

1
21

% f(z)dz = 2mic_;.
c

The equivalence of the two quantities, Res(f,a) in (9.2) and c¢_; in (9.3), is
verified as follows.

Proof (of the residue theorem). Suppose that f(z) has a pole of order m at a.
Then f(z) can be written as

__Cm Com+1 c-1 3 en(z —a)™. .
J() = o b G A o P e (09

n=0

Now we introduce the quantity

= Z Cnom(z —a)"™. (9.5)

Since ¢(z) is analytic everywhere in a neighborhood around a, it can be
expanded in terms of a Taylor series as

> (g
g0 =S Do (9.6)
n=0 '

n

The residue c¢_; is the coefficient of the n = m — 1 term in (9.5). Hence,
comparing (9.5) with (9.6), we have
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1 dm=1

: =11 M e [(F =)@ (9.7)

-1 = mg(mfl)(a) =

which is simply equation (9.2). &

9.1.2 Remarks on Residues

The reason that only the particular coeficient c_; plays a role in evaluating
the contour integral is clarified by integraing both sides of (9.4) along the
contour containing the mth-order pole a. For convenience, we rewrite (9.4) as

m

=3 Y ), 99

where

Ua(z) = Z en(a)(z —a)"
n=0

is the regular part of the series (9.8), thus being analytic everywhere in a
region within a closed contour C' containing a. By integrating f(z) along the
contour C', we set

?if(z)dz = icné@—la)”dz (9.9)

because of the analyticity of W4 (z). The integral of (9.9) can be easily eval-
uated by letting the contour be a circle of radius p centered at a. Since any
point on the contour can be expressed as z = a + pe'?, we have

1 27 s i 27 )
findz = / P = ip_(”_l)/ e~ D%4g. (9.10)
c(z—a) o p°€ 0

Note that the integral (9.10) vanishes for all n # 1, and it is only when n =1
that it has a nonzero value:

1 po+2m
j{ dz = z/ dp = 2mi.
C z—aQ o

Therefore, all the terms in the sum of (9.9) are zero except the n = 1 term,
and Goursat’s formula takes the form

]{ f(2)dz = 2mi c_y. (9.11)
C

In short, once we integrate the function f(z) in (9.8), only the term involving
c_1 survives, whereas the other terms vanish. This results in the fact that the
contour integral fC f(2)dz around a pole is determined by the value of the
specific coefficient ¢_.
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9.1.3 Winding Number

To evaluate §, f(z)dz when C is a general closed curve (and when f may
have isolated singlarities), we introduce the following concept:

& Winding number:
Suppose that C'is a closed curve and that the point z = a is not located
on C'. Then the number

1 dz
n(C’a)_ﬁfgz—a

is called the winding number of C' around a.
Note that if C' represents the boundary of a circle (traversed counterclockwise),
then the winding number reads

n(C,a) = 0 if a is inside the circle,
P ) 1if a is outside the circle.

Both identities have already been proven in the context of Cauchy’s theorem.
In addition, if the curve C encloses k times the point a, then we have

1 2km
n(C,a) = —/ idd = k,
0

21

which explains the terminology “winding number.”

& Theorem:
For any closed curve C and point a ¢ C, the winding number n(C,a) is
an integer.

Proof Suppose that C' is parametrized by z(t), 0 <t < 1, and set

f(s):/oszé;(t_)adt 0<s<1).

Then, it follows from

that the quantity
[2(s) — ale ™)

is a constant, and setting s = 0, we have

[2(s) — ale™7®) = 2(0) — a.
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Hence,

since C is closed, i.e., z(1) = z(0). Thus
f(1) = 27ki for some integer k

and

1
:%f(l):]ﬁ &

In terms of the winding number, the residue theorem given in Sect. 9.1.1
can be restated as follows:

n(C,a)

& Residue theorem (restated):

Suppose f(z) is analytic in a simply connected domain D except for
isolated singularities at 2z, za,- -+, zpy,. Let C' be a closed curve that does
not intersect any of the singularities. Then

7{) f(z)dz = 2mi Y " n(C, zx)Res(f, z)- (9.12)
=

The proof is left to the reader.

9.1.4 Ratio Method

We saw in Sect. 7.4.5 that a function having a pole of order m can be expressed
by the ratio of two polynomials such as

f(z) = plz) (9.13)

In this case, it is possible to formulate an alternative equation that determines
the residue of f(z). Employing such an equation to evaluate the residue is
referred to as a ratio method.

To derive these equations, we first recall the fact that if a function R(z)
satisfies

pla)=p'(a)=---=p™ V(@) =0 and p™(a)#0,

the Taylor series for R(z) is given by

~ p™(a)
- om!

p(2) (z—a)™+ h.o.,
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where h.o. means the terms of higher order. Such a function, for which the
lowest power of (z — a) is m, is said to have an mth-order zero at a.

Now we present the equation for the residue of f(z) at a simple pole a.
As seen from (9.13), a simple pole of f(z) arises from the fact that p(z) has a
zero of (m — 1)th order and ¢(z) has a zero of order m. Then,

p(m—l)(a> m—1
m(zﬁ — a) + h.O.
0=
- (z—a)™+ h.o.

For such a function, we obtain the residue of f at the simple pole a as

(m—1) a
ey = Tim(z — a)f(z) = mP (@)

lim PoTa (9.14)

By means of 9.14, we can compute the residue of f(z) at a simple pole a quite
easily.

Next we consider the equation for a second-order pole of f(z) at a. Such
a pole arises when p(z) has a zero of order m and ¢(z) has a zero of order
(m +2) at a. Then,

(m) (g (m+1) (g
f(Z) - q(7n+2) (a) q(7rz+3) (a) ’

(z _ a)m-{-Q 4 (Z _ a)7rL+3 4 h.o.

(m +2)! (m +3)!

from which we set
. d
c—1 = lim e [(z —a)?f(z)]

_ mt9 ' (m + 3)p(m+1)(a)q(m+2) (a) — (m2—|— l)p(m)(a)q(erB) (a) (915)
m+ 3 [q(m+2)(a)]

For example, if the second-order pole of a function arises from a second-order
zero of q(z), then m = 0. The residue of such a pole is given by (9.15) as

3p'(a)q" (a) — p(a)q'® (a)
[¢"(a)]? '

c_1 =

[N )

(9.16)

9.1.5 Evaluating the Residues

In what follows, we demonstrate actual procedures to evaluate the residue
by means of the three methods discussed in the previous subsections. As an
instructive example, we consider the function
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z

e
T& =
which has a simple pole at z = 0 and a second-order pole at z = —2.

Using a Laurent expansion:

The present purpose is to evaluate the coefficient ¢_; of the Laurent series
expansion of f(z) around the poles at z = 0 and z = —2. In order to do this
we first determine the Taylor series for the factor e?/(z + 2)? around z = 0.

Since the expressions
22

e* —1+z+§+
and
11

L1 S S S I PR 3
(z122  4|1+(z/2)] 1 Ty
hold around z = 0, we have
S Y P RO N CUNL O S D S
2(2+2)? 4z 2! 4 4z 16

Thus, we immediately obtain

Similarly we have

3
c_1(—2) = —16_2 (see Exercise 1).

Using Goursat’s formula:

The residue of the simple pole at z = 0 is given by

c-1(0) = ilﬂ% [Z (Ze-:2)]

c_1(-2) = 1 lim 4 {(z+2)2 672.

1
4
and that of the second-order pole at z = —2 is given by
1 =—=2dz } T4
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Using the ratio method:

For this example, the numerator and denominator functions can be chosen in
different ways. For the residue at z = 0, we could take

p(z) =€, q(z)=2(z+2)

or, alternatively,

p(2) = m, q(2) = 2.
For either choice, the residue for the simple pole is given by
p(0) 1
~1(0) = = -
c-1(0) J0) " 1

The residue c_j(—2) can be obtained in a similar manner as above (see
Exercise 2).
Exercises

1. Evaluate the residue of ;

e
at z = —2 by using a Laurent expansion.

Solution: The residue of f(z) at z = —2 is found by using the
expression

o 2)n ) 2
e* = e 22 = 72 Z 7(2 +' ) =2 [1 +(z+2)+ L +2) +
~

o .
and the Taylor series expansion for 1/z around z = —2 as
11 1 B i(z+2)m 1 242 (2427
z 21— (2+2)/2] ogm+l 2 4 8
Thus, the Laurent series for f(z) around z = —2 is
e* 1, 1 n 3 1 n 5 n
= _Z¢ 2 S
2(z+2)? 2 (24+2)2 2z+2 4 ’

from which we have
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Evaluate the residue of ;

e
z)= ———
4 = s e
at z = —2 using the ratio method.
Solution: For the pole at z = —2, we can choose either

pz) =€, q(z) = 2(2 +2)

as before or ;

e
P =S a) = (42
Then, regardless of how the numerator and denominator are cho-
sen, we refer to (9.16) to obtain
2 3p/(=2)¢"(=2) = p(=2)¢P(=2) 3

D=3 (2P i 4

9.2 Applications to Real Integrals

9.2.1 Classification of Evaluable Real Integrals

Using the residue theorem, we can evaluate the five types of real integrals
listed below.

1.

27
f(cosB, sinf)df, where f(z,y) is a rational function without a pole
0
on the circle 22 + y? = 1.

. / f(z)dz, where f(z) is a rational function without a real pole and

isisubject to the condition that lim zf(x)=0.

|z| =00

. / f(z)e™dxz, where f(z) is an analytic function in the upper-half

plane Imz > 0 except at a finite number of points.

. / f(z)/x%dx, where a denotes a real number such that 0 < a < 1 and

0
f(2) is a rational function with no pole on the positive real axis x > 0,
which satisfies the condition f(2)/2*"* — 0 as z — 0 and z — oo.

. / f(z)logxdx, where f(z) is a rational function with no pole on the
0

positive real axis x > 0 and satisfies the condition liIJIrl xf(z) =0.
T—T00
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In Sect. 9.2.2-9.2.6 we demonstrate actual processes for evaluating the
above integrals.

9.2.2 Type 1: Integrals of f(cos@,sin@)

Consider an integral of the form

2
f(cos @, sind)db.
0

Setting z = €' makes it a contour integral around the unit circle, and thus
the evaluation of the residues within the circle completes the integration.

Ezample We evaluate the integral

1—/%‘” (p<1) 9.17)
Jo 1—2pcos+p? P ' '

If we express cos @ in terms of z = e, 9.17 becomes a contour integral,

1 dz 1 dz
I= o4y 9.18
ﬁl—p<z+z—1>+p2 ifcu—pzxz—p) (9.18)

where C' is a unit circle centered at the origin. The integrand in (9.18) has a
simple (first-order) pole at z = p within C. Hence, we obtain

1 1 2
I == x 2ri lim =T &
i z—p \ 1 —pz 1—p?

9.2.3 Type 2: Integrals of Rational Function

Next consider the integral
I= / f(z)dz, (9.19)

where f(z) is a rational function subject to the condition

lim af(z) =0,
|| —o0
which is a necessary and sufficient condition for the integral to be convergent.
To evaluate (9.19), we consider the integral of f(z) along a closed contour
consisting of the real axis from —R to +R and a semicircle I'(R) in the upper
half-plane. The contour integral is expressed as

}[C F(2)dz = /_ z ) + /F RiCIE (9.20)
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From the Lemma below, it follows that the second term in (9.20) vanishes in
the limit R — oo. Hence, we obtain

lim ]{jf(z)dz = /i f(z)de, (9.21)

R—o

and applying the residue theorem yields
/ f(z)dx = 27riZRes(f7 a;),
oo 7

where a; is the jth pole of f(z) in the upper half-plane. Therefore, the evalu-
ation of the residues located within the upper half-plane completes the inte-
gration.

Ezample We prove the equation

*  dz
I: _—
/_ool+:v2 "

Since x/(1 + 2?) vanishes as |z| — oo, we may follow a process similar to the
one discussed above. Since z = i is the only pole of 1/(1+2%) = 1/(2+1i)(z—1)
involved in the upper half-plane, we have

1
I = (2mi) - Res(i) = 27m'? = .
i
Less simple examples will be found in Exercises Sect. 9.2. &
As was noted earlier, our result (9.21) is based on the following lemma:

& Lemma:
Let f(z) be continuous in the sector 01 < argz < 6. If

lim zf(z) =0 for 6; < argz < 02, (9.22)

[z| =00

then the integral [ f(z)dz extended over the arc of the circle |z| = r con-
tained in the sector tends to 0 as r — oo.

Proof Let M (r) be the upper bound of |f(z)| on the arc of the circle |z| = r.
Then we have

‘ / F(2)dz

In view of the condition (9.22), the right-hand side of (9.23) vanishes as r —
00. This completes the proof. o

< M) /:2 rdd = M(r) - 705 — 01). (9.23)
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9.2.4 Type 3: Integrals of f(x)e’®

We now study integrals of the form

| swea.

where f is analytic on the upper half-plane Imz > 0 except at a finite number
of singularities (if they exist). We first consider the case when the singularities
are not on the real axis. Then, the integral

R .
/ f(x)edx
-R
has a meaning, which can be seen from the following theorem:

& Theorem:
If lim|,| o f(2) = 0 for Imz > 0, then

R
Rir_{lw/_Rf(x)e s mZRes [f(z)e*],
the summation extending over the singularities of f(z) contained in the
upper half-plane y > 0.

Before starting the proof, we note that |e**| < 1 in the half-plane y > 0. This
leads us to integrate on the half-plane y > 0 along the contour used above for
an integral of type 2. To prove the theorem, thus it suffices to show that the
integral fF(R) f(2)e*dz tends to 0 as 7 tends to oo.

If we know in advance that lim|,|_. 2f(2) = 0, then it would be sufficient
to apply the lemma in Sect. 9.2.3. To prove that fF(R) f(2)e**dz tends to 0
with only the hypothesis of the theorem above, we use the following lemma:

# Jordan Lemma:

Let f(z) be a function defined in a sector of the half-plane y > 0. If
lim|,| o0 f(2) = 0, the integral [ f(z)e"*dz extended over the arc of the
circle |z| = r contained in the sector tends to 0 as r tends to co.

Proof Let us put z = re’® and let M (r) be the upper bound of |f(re??)| as 6
varies, the point €’ remaining in the sector. Then,

‘ / F(2)e*dz

T ) /2 )
< M(r) / e "0 — 2M (r) / e Tsinlpg, (9.24)
0 0
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Since o
s sin 7T
< < <0< —
5 S5 S 1 for 0<60< 5
we have
w/2 . /2 - 0
/ eTsIn0pg < / e~ 3107 < / e = 5. (9.25)
0 0 0 2

From (9.24) and (9.25), it follows that

’/f(z)eizdz

In view of our assumption lim,|_, f(2) = 0, the right-hand side of (9.26)
vanishes as r — oo, which completes the proof. &

< mM(r). (9.26)

Remark.

1. If we have to calculate an integral

[ 0; fx)e ®dz

that involves a negative imaginary exponential e %%, it would be necessary
to integrate in the lower half-plane instead of the upper one because the
function |e~%*| is bounded in the lower half-plane y < 0. More generally,
an integral of the form [*_ f(x)e®”dx (where a is complex constant) can
be evaluated by integrating in the half-plane where |e®*| < 1.

2. Remember that sinz and cosz are not bounded in any half-plane. To

evaluate integrals of the form
oo (o)
/ f(z)sin™ xdx and / f(z) cos™ xdzx,
—00 —o0

we always express the trigonometric functions in terms of complex expo-
nentials so that the preceding methods can be applied.

9.2.5 Type 4: Integrals of f(x)/x*

/0°° fiz)d%

where o denotes a real number such that 0 < o < 1, and f(z) is a rational
function with no pole on the positive real axis z > 0. In addition, we assume
f(2) such that f(z)/2%71 — 0 in the limits 2 — 0 and z — oo.

Consider integrals of the form




272 9 Contour Integrals

To calculate such an integral, we consider the function

of the complex variable z, defined in the plane with the positive real axis
x > 0 excluded. Let D be the open set thus defined. It is necessary to specify
the branch of z chosen in D, so we take the branch of the argument of z
between 0 and 27. With this convention, we integrate g(z) along the closed
path C(r,e) as follows: we first trace the real axis from ¢ > 0 to r > 0, then
the circle I'(r) of centered at the origin and radius r in the positive sense,
then the real axis from r to €, and finally, the circle (¢) of center 0 and radius
¢ in the negative sense. The integral

/ @dz
C(r,e) z%

is equal to the sum of the residues of the poles of f(z)/z* contained in D if
r has been chosen sufficiently large and ¢ sufficiently small. We have

C(re) # r(r)y # y(e) * e T
because when the argument of z is equal to 2,
Za — e27ria|z‘o¢.

From assumption, f(z)/2%~! tends to 0 when z tends to 0 or when |z| tends
to infinity. Thus the integrals along I'(r) and (g) tend to 0 as r — oo and
¢ — 0. On the limit, we have

(1— e 2m) /OOO %dw =2mi » Res {fz(j)} : (9.27)

This relation allows us to calculate the original integral.

Ezample Try to evaluate the integral

i dx
IZ/ — O<a<l).
o x( ( )

1+x)
Here we have 1
1) = 1o
where there is only one pole at z = —1. As the branch of the argument of z is

equal to 7 at this point, the residue of f(z)/z® at this pole is equal to 1/e™*.
Relation (9.27) then gives
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9.2.6 Type 5: Integrals of f(x)logx

The final type of integral to be noted is a class of the form

/OO f(x)log xdx,
0

where f is a rational function with no pole on the positive real axis > 0 and

lim zf(z) = 0.

r— 00

This last condition ensures that the integral is convergent.

We consider the same open set D as for integrals of Type 4 and the same
path of integration. Here again, we must specify the branch chosen for log z,
and we choose the argument of z between 0 and 27. For a reason that will
soon be apparent, we integrate the function f(z)(log 2)? instead of f(z)log z.
Here again the integrals along the circles I'(r) and «(e) tend to 0 as r — oo
and € — 0, respectively.

When the argument z is equal to 27, we have

log z = log x + 2.
Thus we have the relation

/ f(z)(log x)*dx — / f(z)(log x + 27i)%dx = 2mi Z Res [ f(z)(log 2) ]

and, hence,

—2/ fla logxd:z:—Zm/ flx dx—ZRes z)(logz)?] . (9.28)

By taking the imaginary part of the relation (9.28), we obtain the desired

result:
/ f(z)log xdx = —fIm {Z Res [ f(z)(log 2) } }

Example Consider the integral

o0
1
I = / 08T .
o (1+x)3
As the residue of (log2)?/(1 + z)? at the pole z = —1 is equal to 1 — im, we
find

I=—=.
2
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Exercises

2m
de
1. Evaluate the integral defined by I = / ( (0<a<1).
0

1 —acosh)?
Solution: Let z = ¢ and set C': |z| = 1. Then

4 zdz
I - 72 5
ia? Jo [+ (22/a) + 1

The integrand has two poles of second order at z = 21, 25 (|21] <
|22]), which are the solutions of the equation g(z) = 22+ (2z/a) +
1 =0. Since 0 < a < 1, only the pole z; = (=1 + V1 —a?)/a is
found within C. The residue at z; is given by

d z d z
R = lim — —z)——| = lim ——=——
eS(Zl) ZLHle dz |:(z 21) g(Z)Q:| zLHzll dz (Z - 22)2
21+ 2o 2/a

Gr==P (Vi a/a)

and thus we obtain

4 ) 2m
I = me X 27TY,RGS(211) = m

&

1
2. Evaluate the integral I = 2—}{ dz (C: |z] = 1) for integer n.
™ Jo

eZ
Zn
Solution: For integers n < 0, it is apparent that I = 0 since
the integrand is analytic within and on C. For integers n > 0,
f(z) = e*z7" has a pole of order n at z = 0. Using the residue
theorem, we have I =1/(n—1)!. &
o dx
3. Calculate the integral I = / —_—.
o (I 22t
Solution: Define the function f(z) = 1/(1 + 2z2)"*1, and set the
semicircle C' as shown in Fig. 9.1. Within C, f(z) has the pole of
(n+ 1)th order at z = 4, and its residue reads

l dn (Z _ i)n+1 _ l dn (z N i)—(n—i—l)
n! [dzm (1422t . nl [dz"

_ (—=1)™(n+ 1)(|n +2)-- :271 (2i)~(2+D)
ot 1
- 22n(pl)2 24"

Hence, in view of Cauchy’s theorem, we have
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m(2n)!
We now observe that

R dx dz
7{Cf(z)dz = /_R (1 + 22)n+1 +/F (1 + 22)n+1” (9.30)

where I denotes the upper half-circle. Since |1 + 22| > R? — 1 on
C, the second integral in the limit R — oo yields

dz TR
/F (1 T 22)n+1 < (R2 — 1)n+1 — 0. (9.31)
From (9.29)—(9.31), we conclude that
_ m(2n)!
I= 22n(n!)2’ 4
y
R
C
N )
-R 0 - R X

Fig. 9.1. The integration path used in Exercise 3

4. Calculate the integral I = / log(1 — 27 cos 6 + r*)df, where r # 1.
0

Solution: First we assume that » < 1. Observe that the function

log(1—2)/2z = —1—(2/2)—(2?/3) —- -+ is analytic for |z| <r < 1.
Hence, if we set the circle C : |z| = r, we have
1 1— 27
f logl=2),, _ z/ log(1 — 2)dd = 0. (9.32)
e} z 0

Since |1—z|* = 1—2r cos §+r? on C, the real component of the sec-
ond integral in (9.32) reads (i/2) fo% log (1 —2rcosf +72) df =0,
so we get
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I=0 forr<l.

Next we consider the case of r > 1. Set s = 1/r < 1 to obtain

0:/ log(1—2sc059+32)d9:/ 10g<1—20089+12>d9
0 0 r

,
= / [log (1 — 2rcosf + r*) — log r*] do.
0

Hence, we conclude that
I =2mlogr forr>1. &
a—1

1+x
Solution: Consider the power function

[ee]
5. Calculate the integral [ = / dx, where 0 < o < 1.
0

Z['} — eﬁlogz _ 6ﬁ(log|z|+zargz)

with —1 < 3 < 0. Its branch for 0 < argz < 27 is single-valued on
the domain D enclosed by the contour C = AB+ 1"+ B'A’ +~
depicted in Fig. 9.2. Let the radius r of the circle v be sufficiently
small and that R of I" be sufficiently large. Then, the pole z = —1
of the function f(z) = z%/(1 + z) is located within C so that we

have
R .8 R B,p3-2mi
x zfe
jif(z)dz—/r 1+I+/rf(z>dz_/,« m}-ﬁ-[yf(z)dz.
(9.33)
Observe that
E& 2 RAH
< <
/Ff(z)dz < F|1+Z||dz|7 o1 -0 (R— )
and i1
/f(z)dz < 2mr —0 (r—0).
- 1—r

Take the limits R — oo and » — 0 on both sides of (9.33) to yield

Y e B ,
(1 — 66'27”) / Y dr= Res [ c ,1] =27 lim 2% = 27wie® ™,
0 142 z——1

which then gives us

[e'e] 8 B-mi
T e
dr =2mi———=—.
/0 Lo T epom

Since § = a — 1, the above result is equivalent to

I = ™

sinam’
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y

Fig. 9.2. Integration path C = AB + I' + B’ A’ + ~ used in Exercise 5

9.3 More Applications of Residue Calculus

9.3.1 Integrals on Rectangular Contours

The integrals discussed so far are evaluated using the residue theorem based
on a circular (or semicircular) contour whose radius is eventually made to be
infinitely large or infinitely small. However, there are other integrals that can
be evaluated by the residue theorem that do not have to be closed with a
circle. Several examples are given below.

Let us consider the integral

o xT
I :/ L
oo (14 €20)

To evaluate it, we examine the contour integral

ze®

around the rectangular contour shown in Fig. 9.3. Beginning at the lower left
hand corner of the rectangle,

L T ™ . L+ —L . T4im
L Y
J / we / (L +1iy)e idy + / (x+1im)e i
0 L

_1 (14 e2)? (1+ 62(L+iy))2 (1+ 62(1“”))2

0 N

_I y

+/ CLriyle % g, (9.35)
™ (1 + 62(7L+7‘y))
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3ri/2¢

7ri/2 ®

—mif2¢

Fig. 9.3. Rectangular contour surrounding the path z = 7i/2

In the limit L — oo, the second and fourth integral of (9.35) go to zero, since
in this limit the magnitude of e2(£+%) and e2(~L+%) hecome very large or
very small, respectively, compared to unity. Hence, we have

00 T —0o0 . T4+
Jim J:/ %dﬂ/ (ztime ™ g,
—00 ) (1 +e JU) Joo (1 _|_€2(:c+z7r))

[e's) . :c+7l7r o0 xT
_ I+/ @+’”—F2d1 = 217m/ 6725136, (9.36)
—oo (1 + e2(@+im) —oo (1 +€27)

where we have used the expressions et = —¢% and e2(*1i7) — 27 Ag g
result, the integral I to be evaluated is expressed in terms of J as

1 ir [ e’
I=-lim J+ — ——dz. 9.37
2Ty (142" (9:37)

The contour integral J is readily evaluated by employing the residue the-
orem. Looking back to the definition (9.34), we see that J has second-order

poles at the values of z for which e??* = —1. These values are
o dim ) 1
Z—th,j:2,,:|:l(N+2)7T,

where N is a nonnegative integer. Note that only the pole at z = imw/2 is
enclosed in the rectangle (see Fig. 9.3). Hence, using the ratio method (see
Sect. 9.1.4) we have

) i o ptim/2) —m(2+im)
J =92 R _ =92 .2 = 9.38
miRes ( 5 ) i 7 (i /2) 7 , (9.38)
where p(z) = ze* and ¢(z) = (1 + €2*)? are constituents of the integrand in

(9.34).
The latter integral of (9.37) is evaluated by substituting w = e*, and it
follows that

> e* o dw 1 [ dw
= T .
/. ey ™ | arer=s/ wrae 09
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Thus, applying the residue theorem yields

1 [ dw 1 . . L d? 1 77
5/;Oom :5271'21:{68(2) —ngglzmm —Z (940)

From (9.38) and (9.40), we finally obtain

s s s
I=—2+imr)+—=——(1+1im).
4( i) 1 4( i)

9.3.2 Fresnel Integrals

We would like to derive the equations

kx?)dx = in(ka®)dr = =1/ =
/0 cos(kxz?)dx /0 sin(kaz?)dx 5\ ok

with a real positive constant k. These are known as the Fresnel cosine
integral and Fresnel sine integral. Integrals of this type are encountered
in the study of a phenomenon called diffraction, which is exhibited by all types
of waves such as light and sound.

In this connection we consider the integral

I :% e dz (k> 0) (9.41)
C

around the contour shown in Fig. 9.4. The integral variable z becomes z = x
on the segment along the real axis, z = Re'® (0 < ¢ < 7/4) along the large
(ultimately infinite) arc, and z = x(1 + ¢) along the slanted segment defined
by y = 2. Therefore, with (1 + i)? = 2i, we have

0 /4
. g 9 . 2 2i¢ |
lim e** dz = e dx 4+ lim e i Rd
R—oo Jor 0 R—o0 0

0
+(1+ i)/ e k" dg. (9.42)
Our objective is to evaluate the real and imaginary parts of the first integral
on the right-hand side of (9.42). Then, evaluations of the other integrals shown
in (9.42) complete the computation.

First, we readily obtain

f %y = 0, (9.43)
c



280 9 Contour Integrals

0 "R

Fig. 9.4. Contour for evaluating the integral (9.41)

since there are no poles within the contour of Fig. 9.4.
Second, we consider the integral along the arc, which is given in the second
term on the right-hand side of (9.42). On the large arc, we have

’ReikR%M

_ ‘Reiknf“ cos(29) ,—kR*sin(2¢) |  Ro—kRsin(2¢)

where the sign of sin(2¢) is always nonnegative in the range 0 < ¢ < 7/4.
Hence,
lim Re #R°sin(20) — (9.44)

R—o0

so that the integral along the arc vanishes in the limit R — oo. In fact,
I’Hoépital’s rule states that for a > 0,

lim —— li _
1m = 1im =
R—o0 e(LR2 R—o0 QG/Rea’RZ

Finally we examine the integral along the slanted segment, i.e., the third
term on the right-hand side of (9.42). To evaluate it, we consider the quantity

oo 2 o0 oo
J = (/ erIzdx) :/ e~ 2k / 672ky2dy
= /OO dx /OO dy e =2k %)

In terms of the polar coordinates, it yields

o) 27 (e’ 2 2
d
J :/ dr/ g re=2k7" :/ ) / o e~ = =
0 0 0 2 Jo 2k

and we have the Gaussian integral given by

> —2kz? ™
do = || —
/ o TV
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0 .
.1
(1 —H’)/ ek’ gy = ;l,/gik. (9.45)

Substituting the results of (9.43), (9.44), and (9.45) into (9.42), we find that

/0 etha® gy = %, /%. (9.46)

Writing the exponential in trigonometric form and equating the real and imag-
inary parts of both sides of (9.42), we obtain the Fresnel integral:

> o 1 /7
2 _ : 2 ——
/0 cos(kz?)dx 7/0 sin(kx®)dx = 2”2k' &

9.3.3 Summation of Series

so that

Our final application of the residue theorem is the summation of a series
> f(n). Using this method, we can convert a certain type of series to

n—=—oo

simple forms such as

= 1 w2
- 9.47
n;m (a+mn)?  sin?(ra) (0.47)
and
> 2 1
2 e~ othe - o

This technique is particularly useful, for instance, to express a power series
solution of a differential equation in a simple closed form. In fact, this device
is generalized for various series summations as shown below.

& Theorem:
An infinite series of functions f(n) with respect to an integer n is given
by

Z f(n)=— Z Res (g, an), (9-48)
where Res (g, a,) is the residue of the specific function

g(2) = m/(z)

 tan(mz)

at the nth pole of f(z) located at z = ay,.
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According to this theorem, we see that if the number of poles of f(z) is finite
and the values of Res (g, a,,) are readily obtained, the series on the left-hand
side of (9.48) is written in a simple form.

Proof The key point is to use a function given by 7/ tan(rz). This function
has simple poles at z = 0,41, £2,-- -, each with residue 1 evaluated as

(z—n) = limézl,

o tan(rz) z—n 7/ cos?(mz)

where we used ’Hépital’s rule (see Exercise 3 in Sect. 8.1). In addition, the
function 7/ tan(mz) is bounded at infinity except on the real axis. To derive
(9.48), let us consider the contour integral

f ) g, (9.49)
C

, tan(7z)

around the contour C; shown in Fig. 9.5. Here f(z) is assumed to have no
branch points or essential singularities anywhere. Since only the pole at z = 0
is found within Cq, the contour integral equals 27i times the residue of the
integrand at z = 0, which is f(0), i.e.,

7{ ") 42— omif(0).
C

| tan(mz)

y
(6]
K2
¢
O O L g L X
-2 -1 0 1 2

Fig. 9.5. A sequence of rectangular contours to derive equation (9.48)

Next, the integral around contour Cj is

, tan(7z)

where Res(g,a1) stems from the contribution of the pole of f(z) located at
z = ay. Finally, for a contour at infinity, the integral must be

]i mf(2) dz = 2mi { Z [f(n) + Res(g, an)]} . (9.50)

_ tan(mz)

n=—oo
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If |zf(2)] — 0 as |z| — oo, the infinite contour integral is zero so that we
successfully obtain the equation:

Y fm)=— ) Res(g.an). & (9.51)

n=—oo n=-—oo

9.3.4 Langevin and Riemann zeta Functions

Our present aim is to establish the equivalence between Langevin’s
function,
cothz — (1/x),

and the sum
o0

S
1.2 + n271'2 :

n=1
Letting f(z) = 2z/(2? 4 2?7?), and using the above equation, we obtain

N

2 1
Z FZQWQ = %ﬁﬂcot wzf(2)dz — Z Res [mcot(mz) f(2)],
m=—N poles

where C' is a closed contour, say, a rectangle, enclosing the points z =
0,£1,---. Now let the length and width of the rectangle C' approach oo.

As this happens,

1 1 2
‘mfcﬂcotﬂ'zf(z)dz < 57{C7T\cot7rz\ ’;U2-|-J;L27r2 |dz] = 0.  (9.52)

Hence, we have

oo

2 t 2
Z x — _Res (mcot7z)2x
22 + n2n2 22+ 2202 |y

[ =)

7
= 2icot(ixz) = 2 cothx.

This result can be rewritten as

> 2 2
QZm‘FE:QCOthIE

m=1

or
1 2z
cothz — 7 m5=1 22 1 n2n (9.53)

which establishes the result we stated at the outset.
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Remark. To see that the integral in (9.52) vanishes as z — 00, we observe that

| cosmz| cos? mx + sinh? 7y
|cot mz| = =

. - . . 2 .
| sin7z| sin® 7z + sinh® 7y

If we choose the rectangle whose vertical sides cross the x-axis at a large

enough half-integer, say, z = 10° + 1 so that cos72 = 0 and sin 7z = 1, then

2
over these sides of the rectangle

. h2
|cotmz| = M = |tanh7my| < 1.
1+ sinh” 7y

Over the horizontal sides of the rectangle, lim,_ . |cot mz| = 1. Thus the
integrand goes as |1/2%| as |z| — oo, and the integral vanishes.

If we integrate both sides of (9.53) from 0 to x, we get

ad 2 s 2 sinh x
In{l4+ ——= ) =1 14+ —— =1 .
S i) = I (4 5| - ()

m=1

Hence,

Sinhx_H 14 T
x m2n2 )’

We may extend this result to all z in the complex plane by analytic contin-
uation. Then setting x = 6 with 6 real, we obtain

. i 62
sinf =0 H (1 — n27r2) .
n=1

This infinite product formula displays all the zeros of sin 8 explicitly. It repre-
sents the complete factorization of the Taylor series and can, in fact, be taken
as the definition of the sine function.

By equating coefficients of the 62 term of both sides of the above equation,
we obtain a useful sum:

< q 2
>

which is a special value of the Riemann zeta function,
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Exercises

1. Evaluate Y 02 m by considering the contour integral:

T 1
=¢ ——— ——dz,
c tan(mz) (a + z)
where a is not an integer and C' is a circle of large radius,
Solution: In order to use equation (9.48), we define

1 T 1

1(z) = m and g(2) = tan(mrz) . (a+2)?"

Since the integrand g(z) has simple poles at z = 0,+1,£2--- and
a double pole at z = —a, evaluation of Res(g,—a) completes the
problem [see (9.48)]. To find the residue at z = —a, set z = —a+¢&
for small ¢ and determine the coefficient of £~

T 1 T 1

tan(rz) (a +2)2 €2 tan(—am + &)

It follows from (9.54) that the residue at the double pole z = —a
is

{ d 1 } { - } 2
T|—— =7 |—5— = .
dztan(mz)|,__, sin®(72)] ., sin?(7a)
Therefore, it is readily seen from (9.48) that

> 2

1 7r
Z (a+n)?  sin’ma’ &

n=—oo

9.4 Argument Principle

9.4.1 The Principle

It may occur that a function f(z) has several zeros and poles simulateously
in a domain D. If we denote the number of such zeros and poles by Ny and
Ny, respectively, these numbers are related to one another as stated below.
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& Argument principle:
Let f(z) be an analytic function within a closed contour C' except at a
finite number of poles. If f(z) # 0 on C, then

SO
3mi o fo) @ T N0 N 954

where Ny and N, are the numbers of zeros and poles of f(z) in C, respec-
tively. Both zeros and poles are to be counted with their multiplicities.

Proof By the residue theorem, the integral

L1 f(2)
2ri c f(z) o

is equal to the sum of the residues of the logarithmic derivative of f(z) in D,

ie.,
"(z d[log f(z
sy = L) _ dloz )
f(2) dz
The only possible singularities of g(z) in D coincide with the zeros and poles

of f(z). In order to determine the residue of g(z) at a zero of f(z), we observe
that in the neighborhood of a zero a of the nth order, f(z) has an expansion

f(z)=(z—a)"[cr +c2(z—a)+---], a1 #0.

We therefore have
f(z)=(z—a)" fi(2),

where f1(z) #Z 0 in a certain neighborhood of z = a. Hence,

log f(z) = nlog(z — a) + log fi(z),

and

fllz) _ n fi2)

1) " rmaRG)

where the last term is analytic at z = a. It follows that the residue of g(z),
which is called the logarithmic residue of f(z) at z = a is n, i.e., it is equal
to the order of the zero of f(z) at z = a. If the zeros of f(z) in D are counted
with their multiplicities, the sum of the logarithmic residues of f(z) at the
zeros of f(z) in D will be equal to the number of zeros.

We now turn to the poles of f(z) in D. If z = b is a pole of order m, we
have near it an expansion
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F(2) = (Z_b)m+...+%+cm+l+...
1
= gl b+
_ _f(?)
(z=b)m™’

where fo(z) is analytic at z = b and f2(z) # 0. Hence,
P m A

f(2) z=b " fa(z)’
which shows that the logarithmic residue of f(z) at a pole of f(z) of order m
is —m. If the poles of f(z) in D are counted with their multiplicities, the sum
of the logarithmic residues of f(z) at the points of f(z) in D will be equal to
minus the number of these poles. Since g(z) has no singularities in D except
at the zeros and poles of f(z), we have proven our theorem. &

Remark. If we replace f(z) in (9.54) by f(z) — a, this formula will yield the
difference between the number of zeros and the poles of f(z) — a. Since the
latter are identical with the poles of f(z), we find that

1 f'z)
%imdz—Na—Nw,

where N, indicates how often the value of a is taken by f(z) in D.

Ezamples 1. For f(z) = 22 and C': 2| = 1, Ny = 2 and N, = 0 so that we

have
1 re),
2mi Jo f(2)
In fact, the integral reads

z=2.

1 / 1 2 1
fff(Z)dZ:f Ly = — x 2% 2mi=2.
o2mi Jo f(2) 21 Joo 22 2w

2. For f(z) =z/(z —a) and C': |z| = R, Ny = 1 and

1 if R>a,
N‘X’_{O if R <a.

Hence, we have
(9.55)

1 f'(z), [0 if R>a,
omi Jo f(z) |1 ifR<a.

Indeed, f(2) =1+ [a/(z = a)], f'(z) = =1/(z = a)?, f'/f = (1/2) = [1/
(z — a)], which yields (9.55).
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9.4.2 Variation of the Argument

Equation (9.54) can be brought into a different form in which its geometric
character becomes more apparent. If we write

p=argf(z), f(2)=|f(2)le",

we obtain

L[, 1
%jif(z)dZ—%%odlogf(z)
1

~ f [dlog | f(z)| + idy]

1 1
=— ¢ dl — .
myfcd og|f(z)| + 2W7{Cd<p

Recall that logw(z) is a many-valued function of w. If logw is continued
along a closed curve that surrounds to origin, we shall not return to the value
of logw with which we started. However, this many-valuedness is confined
to Im(logw) = argw, i.e., Re(logw) = log|w| is single-valued. If we write
w = f(z), it follows that

f dlog|f(2)| = 0.
C

In fact,

/ " dlog |£(2)] = log £ (z2)| — log | f(z1)],

z1

and if the integration is performed over a closed contour, the terminals z;
and zy of the integration coincide; moreover, owing the single-valuedness of
log |f(#)|, the value of the integral is zero. Hence, we have

f'liz) 1
o . dz = %jfcd% (9.56)

where ¢ = argf(z).
To interpret (9.56), we observe that

/ Pl = o(za) — (1) = argf () — angf (1)

Z1

is the quantitiative change in the argument of f(z), which is called the
variation of the argument of f(z). The integral fc dy is therefore the
total variation of argf(z) if z describes the entire boundary C' of the domain
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D. Tt is clear that the value of this integral must be an integral multiple of
2. If z describes C, the point f(z) describes a closed curve C’, and if C’
surrounds the origin m times in the positive (counterclockwise) direction, the
increase in argf(z) along C’ will be 2mmx. In view of (9.54) and (9.56), we
obtain the theorem below.

& Theorem:

Let the domain D be bounded by one or more closed contours C' and let
a function f(z) be single-valued and analytic apart from a finite number
of poles. If Ny and N, denote the number of zeros and poles of f(z) in D,
respectively, and f(z) # 0 on C, then

1
_Ac = NO - Noov
27

where A, denotes the total variation of argf(z).

9.4.3 Extentson of the Argument Principle

The argument principle can be extended to the case in which f(z) has zeros
or poles on the boundary C of the domain D. Suppose that f(z¢) = 0, where
2o is situated on C. Let f(z) be analytic at zp; then we have

f(z) = (2 —20)" f1(2), fi(20) #0,

if m is the multiplicity of the zero. In view of the relation

log f(z) = mlog(z — 20) + log f1(2),

it follows that
argf(z) = marg(z — 20) + arg f1(2).

At z = 29, fi(z) # 0 and log f(2) is analytic. Hence, argf;(z) will vary
continuously if z varies along C' and passes through z = z(, but the expression
arg(z — zp) shows a different behavior. Since this is the angle between the
parallel to the positive axis through zy and the linear segment drawn from z
to z, it is clear that if zg is passed arg(z — z9) jumps by the amount 7. The
contribution of this zero to argf(z) will be mm, i.e., one-half of what it would
have been if the zero were situated in the interior of D. If z = zg is a pole of
order m, its contribution to argf(z) will be —mm. This follows immediately
from the fact that f(2)~! has a zero of order m at zo and that

log[f(z) '] = —log f(2).
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We therefore have the following extension of the argument principle.

& Extended argument principle:

The argument principle remains valid if f(z) has poles and zeros on the
boundary, provided that these poles and zeros are counted with half their
multiplicities.

9.4.4 Rouché Theorem

As an application of the argument principle, we prove the following result,
known as the Rouché theorem.

& Rouché theorem:

If the function f(z) and g(z) are analytic and single-valued in a domain
D and on its boundary C' and if |g(2)| < |f(2)| on C, then the number of
zeros of the function f(z) + g(z) within D is equal to that of zeros of f(z).

Proof We have

log [£(2) + g(2)] = log f(2) + log [1 N ”} ,

f(2)
whence
arg [1(2) + 9(2)] = ang 2) + arg |1+ 2. (9.57)

On the contour C, we have

9(2)

1<
It thus follows that the points

_ ., 9(2)

are all situated in the interior of the circle |1 —w| < 1. Since this circle does not
contain the origin, the curve (9.58) cannot surround that point. As a result,
the total variation of the argument of (9.58) along C' is zero. Hence, by (9.57),
we have

Aclf(2) +9(2)] = Ac[f(2)]-

Since neither f(z) nor f(z) + g(z) has poles in D, it follows from (9.54) that
these two functions have the same number of zeros in D. &
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The application of Rouché’s theorem is illustrated by the following short
proof of the maximum principle. If f(z) is analytic in D + C and there is a
point zp in D such that

|f(2)] <|f(20)| for z € C,

then it follows from Rouché’s theorem that the function f(zo)— f(z) and f(zo)
have the same number of zeros in D and the function f(z) — f(zo) has at least
one zero there, namely, at z = zy5. The assumption that |f(z)| < |f(z0)| for
z € C' thus leads to a contradiction.

Exercises

1. Let z; be the zeros of a function f(z) that is analytic in a circular domain
D and let f(z) # 0. Each zero is counted as many times as its multiplicity.
Prove that for every closed curve C' in D that does not pass through a
zero, the sum of winding numbers yields

Zn(C, 2) = Zim fg J}I((ZZ)) dz. (9.59)

Solution: From hypothesis, we can write f(z) = (z — z1)(z —
z9) (2 — zn)g(z), where g(z) is analytic and g(z) # 0 in D.
Forming the logarithmic derivative, we obtain
! 1 1 1 !
7e) R LI

fe)  z—m z2-2 2=z g(2)

for z # z;, and particularly on C. Since g(z) # 0 in D, Cauchy’s
theorem yields ¢ g'(z)/g(z)dz = 0. Recalling the definition of
n(C, z;), we set the desired result (9.59). &
2. Show that an analytic function in a domain D that takes only real values
on the boundary C of D reduces to a constant.

Solution: Let £ = a + ib, b # 0, be a nonreal complex number
and consider the values of f(z) — & for z € C. If b > 0, say, we
have Im[f(z) — &] = b > 0 since f(z) is real on C. The vales of
f(z) — & are thus confined to the upper half-plane so that the
curve described by f(z) — & cannot surround the origin. Hence, we
have Agx[f(z) —&] = 0. Furthermore, since f(z) — £ is analytic in
D + C, it follows from the argument principle that f(z) — & # 0,
i.e., f(z) # £ in D. The same reasoning also applies to values & for
which b < 0. We thus conclude that f(z) does not take nonreal
values in D.
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Next we show that the above result means that f(z) reduces to a
constant. Since f(z) is analytic in D, we have

F(2) = lim fleth) = f2) _ f(z—Hﬁ) — f(2)

h—0 h h—0 ih ’

where h — 0 through positive values. Since f(z) is real throughout
D, the first limit is real and the second limit is imaginary. They can
therefore be equal only if they are both zero. Since z is arbitrary,
it follows that f/(z) = 0 throughout D; hence, f(z) = const. &

3. Show that all zeros of polynomials
p(z) =2"+ 12" 1+ Farz+ ag
are located within the region |z| < Ry, where
Ry = max {1+ |an—1], 1 + |an—2|, -+, 1+ |ai|,]aol} -

Solution: Let f(z) = 2", g(2) = ap_12""1 + -+ + a1z + ag, and
let Ry, = Ro + (1/k) for an arbitrary fixed & € IN. Observe that

laj| <Ry—1<Rp—1 forj=1,2,--- ,n—1
and |ag| < Ro < Ry. Then, if |2| = Ry, we have

l9(2)| < lan—1]|z]""" 4+ |ax]lz| + |ao|
< (Rp— )R} 4+ (Ry — )Ry, + R, = R} = | f(2)].

In view of Rouche’s theorem, f(z) and f(z) + g(z) = p(z) have
the same number of zeros within the region |z| < Ry. Since f(z)
has n zeros and p(z) is an nth-order polynomial, we conclude that
all the zeros of p(z) have to be located within the region |z| < Rj.
Finally, we take the limit kK — oo (since k is arbitrary) to find that
all the zeros of p(z) have to be located within |z] < Ry. &
4. Show that the equation 224 3z41 = 0 has solutions whose absolute values
are less than 2.

Solution: Let z be on the circle |z| = 2. Then we have
23] =8>3-24+1> 32| +1> |32 +1].

This means that there are three solutions to the equation 2% +
3z +1 =0 and that all of them satisfy |z| <2. &
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9.5 Dispersion Relations

9.5.1 Principal Value Integrals

The previous sections treated contour integrals whose integrand has no pole
on the contour C. If a pole is located on C, the integrand diverges at the
pole so that we cannot use ordinary integration methods. This difficulty is
overcome by introducing a new concept called the principal value integral.
To derive it, we consider an integral

Y

9.60
I (9.60)

with the integration contour depicted in Fig. 9.6. In (9.60), « is assumed to
be real without loss of generality. In addition, we assume that f(z) is analytic
at Imz > 0, and behaves as z°|f(z)] — A (3 > 0) as |z| — oo there. In order
for the integral (9.60) to be defined, the contour C' must be traversed in such
a way as to avoid the pole at z = «. Then, since both f(z) and 1/(z — «) are
analytic within and on C, (9.60) equals zero. Therefore, by breaking it up, we
obtain the following expression:

f(2)

crR—Q

T f(w f(z B fx) f(2)
_/;R x_ad +/ d +/o¢+rx_adx+ Fz_adz
=0. (9.61)

Here r is the radius of the small semicircle v centered at *+ = « and R is
the radius of the large semicircle I' centered at the origin. The radius r
can be chosen as small as we please and R can be chosen as large as we
please.

Our current interest is to determine where the sum of the four integrals
appearing in the second line of (9.61) converges in the limits of r — 0 and
R — oo. This is seen by evaluating the integrals along v and I' given in
(9.61). First, once we set z = Re'?, the integral along the large semicircle I"
yields

Fig. 9.6. Integration contour on which the pole of the integrand is located
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7r i0
rz—o o Re? —a
hence,
f(z) R /7r i
.62
FZ?adz R ali? | f(Re™)]| db, (9.62)

where we have used the inequality

|Re®® —a| = V/R? + 0> —2Racos6 > \/R? + a® —2Ra = |R — a.

In the limit R — oo, the right-hand side of (9.62) vanishes since 8 > 0.
Therefore, the integral over the semicircle I" can be made arbitrarily small by
choosing R sufficiently large.

Next, we write the integral along ~v as

/) dz:f(a)/ﬁdz—i—/Mdz. (9.63)

,YZ—Oé — Z—

By setting z — o = re'?, the first integral on the right-hand side is evaluated

as
0

f(a)/vziadz:if(a)/ﬂ df = —ir f(«).

In addition, the Taylor series expansion of f(z) around z = « yields

wdz = f'(a) -ice?dh + fﬁ; @) cee’? cigedf + - = O(e),

which means that the second integral in (9.63) vanishes in the limit r — 0.
Equation (9.61) thus yields

lim lim [/ar /() dx + /R /(@) d:v] —inf(a) = 0. (9.64)

R—oor—0 R T—« 4 L — Q@

Now we introduce a new notation as shown below.

& Principal value integral:
The notation

[ | [ e [ 2

provides the principal value integral (or the Cauchy principal value)
of f(2)/(z — a) for real a.
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with this notation, (9.64) reads

lim P ! /(@)

Jim 7Rx_adx:z7rf(a),

where f(x) is a complex-valued function of a real variable . For the sake of
brevity, we write this simply as

P[w %dm =inf(a). (9.65)

This result provides a way to evaluate the contour integrals involving sin-
gularities on the integration path. When we decompose f(z) in (9.65) as
f(z) = fr(z)+ifr(x) and equate the real and imaginary parts, we obtain an
important relation between fr and fr:

& Hilbert transform pair:
A pair of functions fr and f; that satisfies the relations

frla) = %P/_OO fﬁdm,

fr(a) = 1p - fR—(x)da:. (9.66)

T J T —«

is called a Hilbert transform pair.
It readily follows from (9.66) that if f;(z) =0, then fr(z) =0.

9.5.2 Several Remarks

The principal value integral is seen as a way of avoiding singularities on a
path of integration; we integration to the point just before the singularity in
question, skip over the singularity, and begin integrating again immediately
beyond the singularity. This prescription enables us to make sense out of

integrals such as
R

dx
/ dr (9.67)

_R T
Apparently, this integral seems to be zero, since an odd function is integrated
over a symmetric domain. However, the singularity at the origin makes the
integral meaningless unless we insert a symbol P in front of it. Following the
prescription for principal value integrals, we can easily evaluate the principal

value of (9.67):
R —r R
Pl | ],
_R T r—0 _R T r €T
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In the first integral on the right-hand side, we set x = —y. Then

R r R
» dw:nm[/du/ d]
R T r—0 R Y r €

where the two integrals within the brackets obviously cancel out. Conse-

quently, we have
R
P dr =0. (9.68)
R X

We emphasize again that the integral (9.68) is completely different from the
meaningless quantity in (9.67).
As a further step, we evaluate the principal value integral defined by

P2
Rl'*Oé

It follows from the result of (9.83) that

i [ [ e

= f(@)n (R - 0‘) ”D/_Z T = 10) g, (9.69)

R+ « «

It often happens that the second integral in the second equation in (9.69) is not
be singular at © = «; for instance, as in the case where f(z) is differentiable
at x = a. In this case, the symbol P there can be dropped

Particularly interesting is the behavior of (9.69) in the limit R — oo, which
yields

P ——dr = 77/ UG ) x. (9.70)
oo T — a T —a
Hence, substituting (9 70) into (9 65), we obtain

/fz_)’

/ fR P ( ) z, (971)

which are complementary expressions of a Hilbert transform pair (9.66).

Remark. Equation (9.70) is equivalent to

P H 4e— 0, and thus 73/ v _y,

e T—a T—a

— 00

which readily follows from the result (9.68).
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9.5.3 Dispersion relations

Mathematical arguments given so far are interesting in their own right, but
their applications to physical sciences are also significant. In the following
discussions, we show that general physical quantities associated with response
phenomena satisfy the Hilbert transform relations given in (9.66) and (9.71).
In the language of physics, the relation between corresponding parts of Hilbert
transform pairs referred to as a dispersion relation, plays an important role
in describing the properties of response functions.

We begin by considering a physical system for which an input I(¢) is related
to a response R(t) in the following linear manner:

R(t) = \/% [ TG )1t 9.72)

For example, I(t') might be the electric field acting on a physical object at a
time ¢' and R(t) is the resulting polarization field at time ¢. We have assumed
that G depends only on the difference ¢ — ¢’ because we want the system to
respond to a sharp input at ¢ as expressed by I(t') = Ip0(¢' —tp). In the same
way, it would respond to a sharp input at ¢tg + 7, i.e., at a time 7 later. For
the first case, we have

Iy

1 * ’ ’ y . to -
Rit) = E/ﬂ Glt = )bt — )t = LGt —1p).  (973)

and for the second,
Ry(t) = L /OC G(t —t")6(t' —to — 7)dt' = ]—OG(t —to—1T),
V2 oo V2m
or, in other words,

Ry(t+7) = \/I%G(t —to) = Ra(t).

Thus if we shift the input by 7, the response is also shifted by 7.

Now, in order to derive the dispersion relation for the physical systems of
interest, we consider the Fourier transform of (9.72). Using the convolution
theorem, we find that

where

1 >~ Twt o 1 >~ Twt
r(w) = —/ R(t)e™dt, g(w)= E/—oo G(t)e*™"dt,

and  j(w) = \/% / I(8)etdt.

Notably, it is possible to extend g(w) into the complex z-plane, based on
the assumptions that
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(i) g(z) is analytic for Imz > 0, and
(il) g(z) — 0as z — .

Observe that (i) and (ii), are the conditions under which we derived the
Hilbert transform pair (see Sect. 9.4.1). After some discussion, we see that
g(z) arising from a G(t) that satisfies the necessary assumptions yields

1 o0 w/
gr(w) = ;’P/ fj(_b)udw’,

1 [o e} /
gr(w) = —;73/ i?(ichdw’. (9.74)

These relations between gr and g; are called the dispersion relations for
g. The validity of assumptions (i) and (ii) that the function g(z) must satisfy
is demonstrated in Sect. 9.5.6.

9.5.4 Kramers—Kronig Relations

The term “dispersion relation” is often restricted to mean a relation between
two functions whose arguments are quantitatively treatable experimentally.
For instance, in (9.74) only a positive frequency (w > 0) should actually be
accessible, so they are not directly practical as they stand. In the following, we
derive an alternative expression of the dispersion relations that involve only
positive, experimentally meaningful frequencies.

We first assume that G(¢) is real, which is obvious from (9.73), where Ry
and I are real. Hence, we may proceed as follows:

1 > 12t
g(z) = Wor /0 G(t)e'"dt,
1

1 & ok & x
“(2) = —= G*te*”tdt:—/ G(t)e ™ tdt
) == [ & = cw
= g(—2%). (9.75)
As a consequence, we have
9°(2) = g(=2"),
which is referred to as the reality condition.
Next let us assume z to be real (z = w) in order to discuss the behavior
of g(z) on the real axis. It follows from the reality condition (9.75) that
gr(w) —igr(w) = gr(-w) +igr(-w)

gr(w) = gr(—w) and  gr(w) = —gr(-w). (9.76)
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That is, gr and g; are even and odd functions of w, respectively. Note that if
the conditions in (9.76) are satisfied, the function

G(t) = e~ “hdw

1 [.¢]
—_— w
vV 2 /—oo g(
becomes a real function. (The proof is left to the reader).

Now we rewrite the first part of (9.74) as

0 / o'} /
gr(w) = l77/ 91() dw' + l77/ 791@1 ) dw’.
—00 0

T w—w T !

we rewrite w’ — —w’ in the first integral and use (9.76) to obtain

w gl
77/ 2 w2d ! (9.77)
and an identical procedure yields
2w > gr(w)
gj(w) = —?PZ) mdw/. (978)

Eventually, the expressions (9.77) and (9.78) involve only positive, experimen-
tally accessible frequencies. These equations are referred to as the Kramers—
Kronig relations.

9.5.5 Subtracted Dispersion Relation

In deriving dispersion relations, it often happens that the quantity of interest,
say g(z), does not tend toward zero as |z| — oo. Furthermore, we are not
usually fortunate enough to know the precise behavior of the quantity as
|z| tends to infinity. Nevertheless, if we at least know that the quantity is
bounded for large values of |z|, the dispersion relation can be reformulated in
the following way:

Suppose that f(z) is analytic in the upper half-plane, and let «p be some
point on the real axis at which f(z) is analytic. Our aim is to derive the
dispersion relation for f(z) under the condition that the asymptotic behavior
of f(z) for z — oo is unknown. Then, instead of f(z), we consider the function

f(2) = fleo)

zZ — Op

which is also analytic in the upper half-plane and not singular at z = ag, and
|¢(z)] — 0 as |z| — oo owing to the boundedness of |f(z)| for z — oco. Thus
in a manner, similar to the case in (9.65), we can write

iTd(x 73/ ¢ d’
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In actuality, we have

o [ )= S]]

T —ap
:P/w<(3wxgiﬂf
:P/ (z' )((x)—ao)d x—aop/ (ac —x —lao)dx/’
irf(z) = iwf(ao)—k(:v—ao)??/_o; (x’—;cf)((sca;’)—ozo)dx/

oo d/ (oo} dl
—f(ao)P/ /x +f(ao)P/ ,L
e T = o T —

The last two principal value integrals are equal to zero as we demonstrate later
n (9.83). Hence, separating the real and imaginary parts, we finally obtain

fr(@) = frlag) + = O‘OP/ (=) da’,

r—x x’fao)

fi(x) = fr(ao) — aOP/ &) II)_ ao)dx’. (9.79)

Relations of the type of (9.79) are referred to as once-subtracted disper-
sion relations. Emphasis is placed on the fact that the relations (9.79) are
free from the assumption that |f(z)| should vanish in the limit z — oo. For
them to be of use in a particular physical problem, we must have a means of
determining, say, fr(ag) for some ayg.

9.5.6 Derivation of Dispersion Relations

This subsection provides a proof of the dispersion relation (9.74). We shall see
that by making a few very reasonable assumptions about the system in ques-
tion, we can show that the real and imaginary parts of the physical quantity
g(w) are intimately related to one another for real values of w (i.e., a disper-
sion relation). The key assumption is the causality requirement: we may
say that causality of the function G(t) implies the analytic properties of g(z)
in the upper half-plane and thus verifies the dispersion relations with respect
to g(w) on the real axis.

Toward this end, let us consider what can be said about G(7) on general
physical grounds. First to be noted is that an input at ¢ should not give rise
to a response at times prior to ¢, i.e., G(7) = 0 for 7 < 0. Thus we have

P = [ "Gl I, (9.80)
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which shows that the response at t is the weighted linear superposition of all
inputs prior to ¢, which is the causality requirement.

Secondly, the possibility that G(7) is singular for any finite 7 is excluded
because, on physical grounds, the response from a sharp input given by

Rt = Gt —t), t>t
( ) - \/ﬂ ( 0)7 > 1o
must always be finite.

Finally, it is assumed that the effect of an input in the remote past does
not appreciably influence the present. This may be stated as the requirement
that G(1) — 0 as 7 — o0, since the response to any impulse dies down after
a sufficiently long time (i.e., any system has some dissipative mechanism).
Furthermore, G(7) should vanish faster than 7! so that it becomes integrable.
Recall that g(z) is defined through an integration of G(t) with respect to ¢.

The following three points summarise our physically motivated assump-
tions on G(T):

(i) G(r)=0for T <0,
(ii) G(r) is bounded for all 7, and
(iii) |G(7)] is integrable, so G(7) — 0 faster than 1/7 as 7 — oo.

We demonstrate below that these three assumptions for G(t) lead naturally
to the two conditions for g(z) under which we have derived the dispersion
relation of g(w).

First, we show that these three conditions require that |g(z)] — 0 at z — oo
on the upper half-plane. It is possible to write

1 > iwt
g(w) = E/o G(t)e*™"dt.

We extend this relation into the complex plane by using the definition

g(Z) = E‘/O G(t)elztdt — ﬁ/o G(t)elwte—7;tdt7

where we have written z = w + 1. We now restrict our attention to the
upper half-plane ( > 0), where the term e~ is a decaying exponential. For
0 <0 <, it reads

1 e :
2 < —=M [ e (FlsnOigy
vl = o /0

where we have replaced G(t) by its maximum value M in view of assumption
(ii) above. Hence, we have
Mg
< —=.
l9(2)| < V2m|z|sin 0
This means that for 0 < 6 < 7, |g(z)] — 0 as |z| — oo. On the other hand,
when 6 = 0 or 7, we have
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1 o .
g(w,n=0) = E./o G(t)e™'dt.

This results in Parseval’s identity:

o 1 (o]
[ lsten=0Pdo= 5 [ iGoPa

—00 — 00
where both sides of improper integrals converge. (See Sect. 3.4.2 for the con-
vergence conditions of an improper integral.) Thus |g(w,n = 0)| vanishes as
w — 00. As a result, |g(z)] — 0 as |z] — oo in the whole region of 0 < 6 < ,
i.e., in any direction in the upper half-plane.
Now we want to show that g(z) is analytic in the upper half-plane. Using

1 oo
g(2) \ﬁ/ e dt = m/o G(t)e™te " dt, (9.81)

we see that for n > 0,

dn izt ¢ > n iwt ,—nt

T \/%/ G(t) . e*dt = \/ﬂ/o t"G(t)e™ e dt. (9.82)
The integrals in (9.82) are uniformly convergent owing to the term e~ ( > 0,
t > 0). Thus g(z) is analytic in the upper half-plane ( > 0). Hence, for any
g(z) arising from a G(t) that satisfies assumptions (i), (ii), and (iii), we can
proceed according to the argument in Sect. 9.4.1, and we finally obtain the
dispersion relation (9.74).

Exercises

1. Prove that

R
dx R—a
=1
P/,Rx—a n<R—|—a>
when —R < a < R.

Solution: We write

a—¢€ d R d
73/ —liml/ < —|—/ m]
R —a e—0 _R T —¢ €+ax—a/

Setting £ = —y in the first integral on the right-hand side, we find

that
R e—a
P/ du = lim {/ dy Jrln(Ra)lne}
_RT—a e—0

R y+a
= liII(l) [lne—In(R+a)+In(R—a) —Ing€

—In (Z;Z) (-R<a<R). & (9.83)



2.

3.
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By using the formula (9.71), prove that

o .
sinx
/ dr = 7.
o0 L

Solution: Consider the function f(z) = e*. This function is an-
alytic everywhere, and if we write z = Re®, then |f(z)] — 0 as
R — oo for all 0 such that 0 < § < 7. In this case, fr(z) = cosx
and fr(z) =sinz, so using (9.71), we obtain

oo

cosa = (1/7r)/ (sinz —sina)/(z — a)dx.
Since sin z—sin o = 2sin[(z—a) /2] cos[(z+a) /2], there is no singu-
larity of the integrand at « = «. For the special case a = 0, we find
that 1 = (1/7) [7_(sinz/x)dw, ie., [7_(sinz/x)dz = 7. From
this result, we also obtain fooo(sin x/x)dr = w/2 by symmetry. &

o T — 1€

1 oo 1t
Show that the integral S(t) = — lim / © _dr reads

271 e—0

1, t>0,
S(t):{o. t<O0.

Solution: Taking the contours Im(z) > 0 for ¢ > 0, and Im(z) < 0
for ¢t < 0, we have the desired result, which is the integral repre-
sentation of Heaviside’s step function. &
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Conformal Mapping

Abstract Conformal mapping refers to transformation from one complex plane
to another such that the local angles and shapes of infinitesimally small figures
are preserved. This special class of mapping is indispensable for solving physics
and engineering problems that are expressed in terms of complex functions with
inconvenient geometries. In this chapter we show that a problem can be drastically
simplified by choosing an appropriate mapping, which allows us to evaluate the
solution using elementary calculus.

10.1 Fundamentals

10.1.1 Conformal Property of Analytic Functions

We are concerned here the mapping properties of an analytic function
w = f(z) in a domain D on the z-plane into the w-plane. Through the map-
ping, any line drawn on the z-plane results in a line on the w-plane. Partic-
ularly when f = w + v is analytic, the transformation is angle-preserving
or conformal. This means that through the transformation from (z,y) to
(u,v), the angle between the crossing lines on the w-plane is equal to the angle
between the crossing lines on the z-plane (see Fig. 10.1). In physics and en-
gineering, the subject derives its usefulness from the possibility of transform-
ing a problem that occurs naturally in a rather difficult setting into another
simpler one.

Let D be a domain on the z-plane, and let I'; and I be two differentiable
arcs lying in D and intersecting at a point z = ¢ in D. If f(z) is an analytic
function in D, the images f(I) and f(I%) are differentiable arcs lying in a
domain D’ = f(D) and intersecting at a point @’ = f(a). Then we say the
following:



306 10 Conformal Mapping
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Fig. 10.1. Angle-preserving property of a conformal mapping w = f(z)

& Conformal mapping:

The mapping w = f(z) is conformal at z = a if for every such pair of
arcs, the angle between the arcs [} and [ intersecting at z = a on the
z-plane is equal to the angle between the arcs f(I7) and f(I%) at their
intersecting point f(a) on the w-plane.

The mapping is said to be conformal in D if it is conformal at each point in D.
We shall see that if a function w = f(z) is analytic, it is necessarily conformal
except at a finite number of specific points; this fact is formally stated below.

& Theorem:
Given an analytic function f(z), the mapping w = f(z) is conformal at
z = a if and only if f'(a) # 0.

Proof For proving sufficiency, we consider the arcs I'; and I given paramet-
rically by
Z1 = Wl(t) and Z9 = Wg(t) (O <t< 1)

and assume that z1, zo are points on I, I3 at a short distance ¢ from z = a.
Then, from the relation

2 —a=10% zy—a=1LleP,

we have the ratio
2 —4a i(B—a)
e .
zZ1—a

As ¢ — 0, 8 —«a must approach the angle 6 between the curves on the z-plane.

That is,
f = lim ang (22 — a> .
10 z1—a
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f
5 flz2) = f
o o 25

Hr(l)ang _f(zl)—

I e
= lim ang N Fla

{— _f(;iii()_(zl_a)

i ’(a) ( a)

f
f
Thus, the condition f/(a) # 0 is necessary. Conversely if (™ (a) = 0 with
n=1,2,--- and f®)(a) # 0, near z = a we have

= lim ang

£—0

] =0, if f'(a) £0. (10.1)

f(z2) = fla) + O[(z = a)"].
Thus, we get

= lim arg {(22 }
£—0 Zl —a

= plim arg (Z2 _ a) = pb,
{—0 21— a

which shows that the angle is magnified by p. Therefore, if the mapping
w = f(z) is conformal, we necessarily have p = 1, which completes the proof
of the sufficiency of the condition. &

10.1.2 Scale Factor

There is another important geometric property that analytic functions pos-
sess: whenever f(z) is analytic, any infinitesimal figure plotted on the z-plane
is transformed into a similar figure on the w-plane with a change in size but
with the proportions (and angles) preserved. We prove this by considering the
length of an infinitesimally small quantity df given by

ou ou ov ov
_ do — au (£ dy). 10.
df = du + idv (axdm—&- aydy) +z(axdx+aydy> (10.2)
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Its square length reads

2 2
|df|> = <audx + 8udy> + (a”dx + avdy)

ox oy ox y
u\> o> 9 ou\’ o\’ 9
-|@) < (@) Jer (&) < (5) )@
Oudu  Ov v

Substituting the Cauchy-Riemann relations into (10.3), we obtain

ou\? ou\ > o\ ? ov\?
df|? = h?|dz|? h h = — — ] = — — .
|df | |dz[*,  where o) T\3, o) T3y
(10.4)
The quantity h is known as a scale factor and measures a magnification ratio

of the elementary lines through the transformation w = f(z). From (10.4), it
readily follows that

a
dz

We see from (10.5) that since df /dz is isotropic, the scale factor h is also
isotropic (i.e., independent of the direction of dz) for any analytic function f.
This means that any infinitesimal figures on the z-plane are transformed into
similar figures on the w-plane with a change in their size by h = |df /dz|.

Note that the magnitude of h depends on points z and may vanish at
points where f’(z) = 0. Points where f’(z) = 0 are called critical points of
the transformation w = f(z), and at these points, the transform becomes non
conformal. The simplest example is

flz) =22

. (10.5)

for which we have
h=1f'(0)] = 0.

In fact, when two line elements passing through z = 0 make an angle §—« with
respect to one another, the corresponding lines on the w-plane make an angle
of 2(8 — ). Thus mapping is not conformal at z = 0. In general, the region
in the neighborhood of the point at which 2 = 0 on the w-plane becomes
greatly compressed. In contrast, the corresponding region on the z-plane is
tremendously expanded.

10.1.3 Mapping of a Differential Area

The scale factor h given in (10.4) can be derived in a different way by consid-
ering the conformal mapping of a differential area. Let f(z) be a conformal
mapping that transforms any points in D of the z-plane onto a region S of the
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w-plane. In the domain D, we define a rectangular differential area element
with sides of the rectangle parallel to the x and y-axes. These sides are given by

dzy = dr and dzy = idy,
The images of dz; and dz, are differential curves in the w-plane given by
dwi = duj + idv; and dws = dus + idvs.

Note that the differential area element of the rectangle in the z-plane reads
dA, = dxdy and that of the parallelogram in the w-plane is

dA,, = [Im(dwidws)|.

Since dz; = dx and dzo = idy, the images of these line elements can be written
as
af ou .Ov
dwy = =—d —+i—|d
L e (a o ) g

and

718f du . Ov
dwy = ayl <8y+13y> dy.

Therefore, dA,, is given by

B . _|ouov  Oudv _ O(u,v)
dA,, = [Im(dwidws)| = ‘81: 9y 0y ox xdy = 9.9) dA,,  (10.6)
where
ou Ju
A(u,v) _ Oudv  Judv| | gz (’Ty
d(x,y)  |dzdy Oyox| |Ov Ov
oxr 0Oy

is called the Jacobian determinant of the transformation. Since f(z) is
analytic, u and v satisfy the Cauchy—Riemann relations over the region R, so
the Jacobian determinant can be written as

d(u,v)  [Ou 2 ou 2_ o\ > o\ >
a(x,w‘(ax) o) “\&) "\ay) - 007
This provides a physical interpretation of the Jacobian determinant 0(u,v)/

O(z,y); namely, it is identical to the square of the same factor h introduced
n (10.4).

10.1.4 Mapping of a Tangent Line

We consider the mapping of a tangent line. Let C' be a curve in the z-plane
and I" be the image of C' in the w-plane (see Fig. 10.2). A differential segment
dw along I is related to the differential segment dz along C by
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_df
dw = %dz = f(2)dz. (10.8)

We suppose wp to be a point on I that is the image of zy on C. Then from
(10.8), the tangent to I" at wq, denoted by 7(wyp), is related to the tangent to
C at zp, denoted by #(zp):

dw dz

d\ — = f'(20) =~ = f'(20)t(20), (10.9)

T(’LU()) = d)\ s

where A parametrizes the curve of I" on the w-plane.

An immediate consequence of equation (10.9) is that if f/(z9) = 0, the
tangent ¢(zp) on the z-plane cannot be related to the tangent 7(wg) on the
w-plane. The point zo that satisfies f/(z) = 0 is called a critical point on
the curve. For simplicity in the following discussion, we assume that the curve
C does not contain any critical points.

The characteristics of the mapping (10.9) become clear by employing the
polar form.

Pwo) = (o)), f(z) = |F/(20)[e ), and  t(z0) = [t(z0)]e").

(10.10)
The first equation shows that 7(wg) is oriented at an angle ¥ (wp) to the u-
axis; similarly, the third one shows that ¢(zp) makes an angle 0(zp) with the
z-axis. It follows from (10.9) that

[ (wo)[e™ () = | f'(z0) [t(20) /170 0 ol
Thus the magnitude of 7(wp) and its argument read
|7 (wo)| = |f'(20)[t(20)] and  ¢(wo) = ¢(20) + O(20)-

Each equation gives us the properties of the conformal mapping of a tangent
line as follows:

(i) The magnitude of the tangent |t(zg)| is modified by the scale factor
|f'(20)], thus being enlarged or shrunk by the mapping. Since |f’(zo)]
depends on zg, the magnification varies from point to point on C'.

y Lz v L

1(z,) w=/(z) W,
<y <) T

C
T(wp)

0 X 0 u

Fig. 10.2. Conformal mapping of a tangential line
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(ii) The angle between the tangent ¢(z) and the z-axis at zo differs from the
angle between the tangent 7(w) and the w-axis at wg. The difference is
determined by the argument of f’(zg), denoted by ¢, called the argument
of the mapping; ¢ also depends on zy and thus varies from point to point

on C.

10.1.5 The Point at Infinity

For later use, we introduce a few concepts that are at the basis of further
investigations on conformal mapping. Our aim is to understand the way in
which the entire spherical curved surface is mapped conformally onto the
entire flat plane with a one-on-one correspondence. This is achieved with the
help of a stereographic projection between the complex plane and an artificial
sphere as described below.

Let us consider a sphere of radius R (for convenience, R is taken as 1/2)
such that the complex plane is tangential to it at the origin, as shown in
Fig. 10.3. The point P on the sphere opposite the origin (called the north
pole, for convenience) is used as the “eye” of the stereographic projection. We
draw straight lines through P that intersect both the sphere and the plane.
These lines permit a mapping of point z on the plane onto the point ¢ on
the sphere (see Fig. 10.3). In this fashion the entire complex plane is mapped
onto the sphere (called a Riemann or a complex sphere).

As to the properties of the Riemann sphere, the following statements can
be verified without much difficulty.

1. Straight lines in the z-plane are mapped onto circles on the sphere that

pass through P.

Fig. 10.3. Riemann sphere
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2. The images of intersecting straight lines on the plane have two common
points on the Riemann sphere, one of which is P.

3. The images of parallel straight lines on the z-plane have only the point P
in common, and they have a common tangent at P.

4. The exterior of a circle |z| = R with R > 1 is mapped onto the interior
of a small spherical cap around point P. As R — oo the cap shrinks to P.

Note that the point P itself has no counterpart on the z-plane. Never-
theless, it has been found convenient to adjoin an extra point to the z-plane,
known as the point at infinity, in such a way that a curve passing through P
on the Riemann sphere is the image of a curve on the z-plane that approaches
the point at infinity.

& Point at infinity:
The point at infinity z = oo is defined as the point Z that is mapped
onto the origin z = 0 by the transformation z = 1/z.

The importance of the point at infinity is greatly enhanced once we appreci-
ate the conformal property of the stereographic projection: i.e., if two curves
intersect on the z-plane at an angle ~, then their images on the sphere inter-
sect at the same angle. This conformal property permits the definition of the
angle between two parallel straight lines on the z-plane, i.e., the angle that
their images make on the sphere at point P. (Indeed this angle is equal to
zero as noted in 3 above.)

10.1.6 Singular Point at Infinity

The concept of a point at infinity is closely interwoven with the study of
singularities of analytic functions. The notion of analyticity can be extended
to a point at infinity by the following device: A function f(z) is considered to
be analytic at infinity if the function

s =1(2)

is analytic at z = 0. A more precise statement on this mater is given below.

& Extended definition of conformal mappings:

A function w = f(z) is said to transform the neighborhood of a point z
conformally into a neighborhood of w = oo if the function n = 1/f(2)
transforms the neighborhood of zy conformally into a neighborhood of
n=0.
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Ezample The mapping w = 1/z is conformal at the origin z = 0. Initially,
the function f(z) = 1/z is not defined at z = 0; however, the subterfuge
based on the Riemann sphere makes the mapping w = 1/z meaningful (and,
furthermore, conformal) at z = 0. Note that it is also conformal at z = oo
even though the derivative f’(z) approaches zero as z — oo.

Owing to the above convention, it becomes possible to introduce the con-
cept of a pole at infinity, a branch at infinity, and so on, through the
corresponding behavior of ¢g(z) at the origin. In fact, owing to our convention,
a function f(z) = e* that has no singularities in the original z-plane comes to
possess an essential singularity at infinity. Other functions that have no
singularities (e.g., all the polynomials in z) are also found to have a breakdown
of analyticity at infinity. In contrast, functions that are analytic at infinity
possess at least one singularity for some finite value of z. The natural conjec-
ture is that there may not be a perfectly analytic function. This problem has
actually been resolved and is embodied in the theorem below.

& Entire function:

A function f(z) whose only singularity is an isolated singularity at the
point at infinity z = oo is called an entire function (or integral func-
tion). If this singularity is a pole of mth order, then f(z) must be a poly-
nomial of degree m.

# Liouville theorem:
The only function f(z) that is analytic in the entire complex plane as
well as at the point at infinity is the constant function f(z) = const.

Remark. In some texts the term “complex plane” is tacitly assumed to mean
the extended complex plane with the point at infinity included. Certain
theorems may then be stated more conveniently. However, one should never
forget that while there is a point at infinity, there is still no such thing as a
complex number “infinity” in the sense that it possesses the algebraic prop-
erties shared by other complex numbers.

Exercises

1. Suppose that two differential curves on the z-plane, meet at a point zg at
which f'(20) = f"(20) = --- = f™ VY (2) = 0 and f(™)(z) # 0. Show
that the angle 0 between the two curves is magnified by m times through
the conformal mapping w = f(z).

Solution: From hypothesis, f(z) can be expanded in the
neighborhood of the point zy as
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f(2) = f(20) + cm(2 — 20)™ + Cmy1(2 — zo)m""l +-

where ¢, # 0. Then, by the same scenario as we used in deriving
(10.1), the angle 6 between the mapped arcs at f(zo) reads

Y f(22) — f(20) (Zz—%)’”
0 =limarg —4——-"2 = limarg | ——
1—0 & f(zl) — f(zo) =0 & Z1 — 20
= mhm arg =mb. &
—0 Z1 — 20

Solution: Let f(z9) = o and take § > 0 small enough so that
f(2) — a has no other zero in |z — 29| < 0. In view of the theorem
regarding the isolated property of zeros, such a § can always be
found. The argument principle says that

277sz ) —« dz,

where C' is a circle |z — 29| = J. Denoting I' = f(C), we have

1— 1 dw 1 dw
C2mi Jpw—a 2w Jpw—p

for any [ satisfying |5 — | < ¢ with sufficiently small €. If we take
¢’ < 6 so that

D={z|z—2|<d}C fHD ={w;|w—a| <e}],

it follows that for any 21,25 € D,

1 dw 1 dw
1:%7§w—f<zl> :%ﬁw—m)’

or equivalently,

2#2_7{f - f(z1) 2m%f

This means that each function f(z) — f(z1) and f(z) — f(z2) has
only one zero inside the circle |z — zg| = §. Therefore, we conclude

that f(z1) # f(22) if 21 # 22. &

)
<
i

. We say that the mapping w = f(z) is locally one-to-one at zq if f(z1) #
f(22) for any two distinct points z; and 2o within the circle |z — 2|
with some ¢ > 0. Show that w = f(z) is locally one-to-one at zy if f(z) is
analytic at zgp and f/(zg) # 0.

]
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10.2 Elementary Transformations

10.2.1 Linear Transformations

The most simple conformal mapping w = f(z) would be the following;:

# Linear transformation:
w=az+ 0, (10.11)

where a and (3 are complex numbers.

A linear transformation generates a translation plus a magnification and a
rotation of a polygon, but does not affect its shape. Thus, for example, a line
maps to a line, a rectangle maps to a rectangle, a circle maps to a circle, etc.

To appreciate the above statement, we first consider the particular case of
a = 1. From (10.11), we have

w=z+p, (10.12)

which describes a translation by the constant g of the points being mapped.
Obviously, a translation does not modify the length of a line or its orientation,
only changes its position with respect to the coordinate axes. Since a polygon
is constructed from three or more lines, the size and orientation of a polygon
are not affected by a translation; only the position of the polygon is changed.

Next we consider the case of § = 0. When we express « in polar form, the
linear transformation becomes

w = |alez
with a constant argument ~y. Then, the line between two points transforms as

w1 — wy = |ale? (21 — 22) = |a - |21 — 22]!O0F0),
Therefore, the length of a line in the z-plane, |21 — 23|, becomes magnified
by a constant factor |a| and the line is rotated through an angle ~. Thus,
the lengths of the sides of a polygon and the orientation of the polygon with
respect to the axes is modified. Nevertheless, its shape remains unchanged by
the linear transformation with g = 0.

We have seen that the values of a and g straightforwardly determine the
image of a polygon in the z-plane under a particular linear transformation.
Conversely, if one knows the coordinates of two points on the original polygon
in the z-plane and the images of those two points in the w-plane, one can
determine o and (3 and thus the linear transformation.
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10.2.2 Bilinear Transformations

There is another important conformal mapping referred to as the bilinear
transformation (or the fractional or M6bius transformation):

# Bilinear transformation:

= B (10.13)
vz + 8

where «, 3,y and § are complex numbers satisfying the relation a.d— 3~ # 0.

The condition ad — By # 0 ensures that

df a0 — Py
dz  (yz+96)2

is nonzero at any finite point of the plane. Accordingly, the bilinear transfor-
mation (10.13) possesses the one-to-one property because if f(z1) = f(z2),

then
az1+f  axn+p

vz +0 Az 48]
which implies (ad — B7)(z1 — 22) = 0, and thus z; = 2.

Remark.

1. If v = 0, the bilinear transformation (10.13) reduces to a linear transfor-
mation, which has already been discussed. Thus, we require that v # 0 in
what follows.

2. The function f(z) = (az+ 3)/(vz + ) serves as a general solution (see
Sect. 15.1.4) of the differential equation:

f// / 1 f// 2
(7)-3(5) o
which is called the Schwarz differential equation.

Observe that the mapping (10.13) has two apparent exceptional points: z = co
and z = —0/~ at which w diverges. It is possible to weed out these exceptions
by extending the definition of conformal representation such that the point
at infinity is included. With such an extension, the conformal property of
the transformation (10.13) at the two points is recovered, even though the
function f(z) itself diverges. Similarly, we cay say that w = f(z) transforms
the neighborhood of z = oo conformally into that of a point wy if w = ¢(§) =
f(1/¢) transforms the neighborhood of £ = 0 conformally into that of the
point wy.
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A particularly interesting example of the bilinear transformation is

zZ— 20

w=f(z) =

(10.14)

o)
z 20

where Im(zg) # 0. This transformation maps the upper half-plane of the z-
plane including the z-axis, onto the unit circle centered at the origin of the
w-plane. This is demonstrated in Exercise 1.

10.2.3 Miscellaneous Transformations

In what follows, we note several elementary transformations that facilitate a
better understanding of the conformal nature of analytic functions. We shall
see that any conformal transformation may be regarded as a transformation
from Cartesian to orthogonal curvilinear coordinates.

Example 1. w = 22, w = \/z
Assume a conformal mapping defined by

w = 22 (10.15)
Setting z = x + iy and separating the real and imaginary parts, we have
2 —y? =u, 2zy=v. (10.16)

Thus, the straight lines parallel to the z- and y-axes in the z-plane denoted
by
r=a and y=2»5

are mapped onto rectangular hyperbolas in the w-plane given by

2 2
5w o 9
u=a 12 and U—@—b,
respectively. This is shown schematically in Fig. 10.4.
Another important feature of the mapping (10.15) is found by expressing
z and w in polar coordinates:

z=pe'?, w=re?.
On substitution in (10.15), we obtain
r=p? 0=20. (10.17)

Hence, the upper half of the z-plane, 0 < ¢ < 7, goes into the entire w-
plane, 0 < 6 < 27; the lower half also goes into the entire w-plane. In other
words, points z and —z in the z-plane obviously go into the same point in the
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Fig. 10.4. Mapping w = 2°

w-plane. This suggests the possibility that some distinct geometric figures in
the z-plane may go into coincident figures in the w-plane.
Next we consider the transformation: w = 1/z. In terms of polar forms, it
reads
JZ = pl/2ei0/2¢inT
so that we have 5
r=+/p, 0= 5+ (10.18)

Owing to the additional term n7 in the latter equation in (10.18), a half
revolution in the z-plane corresponds to one complete revolution in the
w-plane. This is obviously a manifestation of the multivaluedness of the root
function. The mapping of the upper half of the z-plane onto the w-plane is
illustrated schematically in Fig. 10.5.

[T YITIrTree

Fig. 10.5. Mapping w = /z
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Ezample 2. w = e*, w = log 2
In the case of
w =€, (10.19)

there are simple relationships between the Cartesian coordinates in the z-plane
and the polar coordinates in the w-plane

7’616 _ em+zy _ 61(

cosy +isiny); ie, r=¢€", 0=uy.
The lines x = const., parallel to the y-axis, become concentric circles in the
w-plane; the lines y = const., parallel to the z-axis, become rays emerging
from the origin. Accordingly, a strip of the z-plane bounded by y = yo and
Yy = Yo + 2m goes into the entire w-plane.

In the inverse of (10.19)

z=logw, x=1logr, y=~0-+2nm,

which is an infinitely many-valued function since all points for different values
of n correspond to the same point in the w-plane.

FEzxzample 8. w = cosh z
Next let us consider the following functions:

w = cosh z.
The Cartesian coordinates in the two planes are related as follows:

u+ v = cosh(x +iy) = coshxcosy + isinhxsiny,

u = coshx cosy, v =sinhzsiny. (10.20)

Dividing the first equation by coshx, the second by sinhz, squaring and
adding, we have an ellipse in the w-plane that corresponds to the straight
line x = const. in the z-plane. Similarly, y = const. goes into a hyperbola in
the w-plane. The equations of the ellipses and hyperbolas are

u? v? u? v?

=1, ——--——=1 10.21
cosh?z  sinh?z cos?y sin?y ( )

The semimajor and semiminor axes of the ellipses are coshz and sinh z; the
semifocal distance is unity. The semiaxes of the hyperbolas are cosy and sin y;
the semifocal distance is unity. Hence, equations (10.21) represent families of
confocal ellipses and hyperbolas. This transformation may be regarded as a
transformation from Cartesian to elliptic coordinates.

Ezample 4. w=1/z
Consider the function
(10.22)

IS
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and use rectangular coordinates to obtain
(u+iv)(z+iy) =1.
By equating real and imaginary parts, we set
ur —vy =1, wvr+uy=0.

By an algebraic elimination first of x and then of y, we arrive at the two
families of circles:

2 2
1 1 1 1
2 2
= — - . ]- ~2
u® + <v—|— 2y> el (u 23:) +T = (10.23)

The degenerate cases ¢ = 0 and y = 0 cannot be handled by (10.23), but from
(10.22) we find that respectively, they give the two axes u =0 and v = 0.

The transformation is shown in Fig. 10.6. Note that through the transfor-
mation, the edge of the z-plane at infinity (z = o) is pulled into the origin
of the w-plane (w = 0), whereas the center of the z-plane is stretched out
in all directions to infinity in the w-plane. It is possible to visualize this pro-
cess by introducing an artificial concept, called “the point at infinity”; see
Sect. 10.1.5 for details.

Remark. The mapping w = 1/z reverses the orientation of the circumference of
the circle to be mapped: arg(w) = — arg(z). For example, the circumference
of lw| = 1 is described in the negative since if |z| = 1 is described in the
positive sense.

Fig. 10.6. Mapping w = 1/z
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10.2.4 Mapping of Finite-Radius Circle

Remember that the analyticity of functions is characterized by the isotropy
of their derivatives. Owing to the isotropy, infinitely small circles on the
z-plane are transformed into infinitely small circles an the w-plane through
any analytic function w = f(z). Of course, this shape-preserving behavior dis-
appears when the circle has a finite radius; because the scale factor h generally
depends on z. Nevertheless, there exist a class of nontrivial analytic functions
that transform a finite circle on the z-plane onto the w-plane, which is simply
a bilinear transformation.

& Theorem:
Bilinear transformations w = f(z) map circles (or straight lines) on the
z-plane onto circles (or straight lines) on the w-plane.

Proof Our proof is based on the fact that the bilinear transformation formula
(10.11) can be rewritten as

@ —ad 1

w=f) =2+ 020 1
y v o oyz+0

This is composed of a sequential transformation of the following:

1. w = z + b, a simple translation of the plane by the complex vector b.

2. w = az, a rotation of the plane through the angle arga, followed by an
expansion (or contraction) by |al.

3. w = 1/z, an inversion that takes the interior of the unit circle to the
exterior and vice versa.

Since these transformations are all conformal, their composition surely maps
circles (or straight lines) onto circles (or straight lines). &

Remark. Statement 3 above regarding the inversion w = 1/z is followed by
considering the equation

a(z® +y*) + Bz +yy+06=0,

which represents a circle (a # 0) or straight line (o = 0) in the z-plane. This
can be written as

gl

a\Z|2+é(2+Z*)+Z(z—z*)Jré:O. (10.24)

2

Then, the transformation w = 1/z maps it onto

ol + 5w+ %) = Lw = u?) +a =0

which is a circle (§ # 0) or a straight line (6 = 0).



322 10 Conformal Mapping
10.2.5 Invariance of the Cross ratio

The following peculiarity of a Mobius transformation serves as a useful device
in applications of conformal mapping.

& Invariance of the cross ratio:
Any Mobius transformation w = f(z) that maps the four points z;
(i=1,2,3,4) into w; (i = 1,2,3,4), respectively, satisfies

(wl - w4)(w3 - wz) . (2’1 - 24)(23 - 22)

(wl - wz)(ws — wy) (21 — 22)(23 - 24)

A

The constant A is called the cross ratio (or anharmonic ratio).

Proof Let z; (i = 1,2,3,4) be four distinct finite points on the z-plane and
let w; (i = 1,2,3,4) be their corresponding images through a Mdbius trans-
formation. Then, for any two of the points, we have

azk—&—ﬁ_azi—&—ﬁ ad — By

= vz + 0 vzt o - (yzr +0)(v2i +9) (2 = z1),
and, consequently, for all four,
(w1 —wa)(wg —wp) (21 — 24) (23 — 22) (10.25)

(w1 — wa)(ws — wy) (21 — 22)(23 *24).

This clearly ensures the invariance of the cross ratio A under the Mobius
transformation. &

Remark. If one of the points of w;, say wi, is the point at infinity, the
corresponding result is obtained by letting wy — oo in (10.25). The left-hand

side then takes the form
w3 — w2

w3 —wy
This expression is to be regarded as the cross ratio of the points oo, wa, w3, wy.
A similar remark applies if one of the points z; is the point at infinity.

If z4 is taken to be a variable z, then the corresponding image w, on the
w-plane becomes a function of z that obeys the relation
(w1 —w)(wg —we) (21 —2)(23 — 22)

(w1 — w2)(ws — w) - (21 — 29)(23 — 2) (10.26)

By solving (10.26) for w, we can verify that it transforms the three points
21, 22, 23 into the corresponding points wi, ws,ws. In this context, the ex-
pression (10.26) turns out to show that a Mébius transformation is uniquely
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determined by three correspondences. Since a circle is uniquely determined by
three points on its circumference, (10.26) can be used to find Mébius trans-
formations that map a given circle determined by z;(i = 1,2, 3) onto a second
given circle (or straight line) determined by w;(i = 1,2, 3).

Example If we take z1 = 1,29 = 4,23 = —1 and w1 = 0,wy = 1, w3 = oo, we
obtain the transformation )
1=z
w=1 .
142

This maps the circle |z| = 1 on the real axis and the interior |z| < 1 of the
unit circle on the upper half of the w-plane.

Exercises

1. Consider the function w = f(z) = (z—20)/(z — z§) with Im(zg) # 0. Show
that it maps the region Imz > 0 onto |w| < 1.

Solution: Set z = z to obtain

* *
T —z T —z T —z T —z
wr - (3) 6=3) -GR) (50) -
T — 2z x -z x -z T — 2z
That is, the image on the z-axis is the circumference of the unit
circle centered at the origin of the w-plane.
Next we evaluate the image of a point off the z-axis in the

upper half of the z-plane. Expressing z and zy in polar form, we
have

(rew — Toewo) (refw — Toe’wo) B & — &
(rei® — roe=i0o) (re=i0 — roeifo) & + &'

lw|? = (10.27)

where

& =1+ rg —2rrgcosfcosfy and & = 2rrgsinfsinfy.
Since —1 < cosfcosfy < 1, we have

(r—ro)* <7r? 4+ r% —2rrgcosfcosty =&, e, & >0.

In addition, since z and zy are in the upper half-plane, both sin
and sin @, are positive, so £, > 0. Consequently, we have

w]? <1,

which means that the images of points in the upper half of the
z-plane are located in the interior of the unit origin-centered
circle. &
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| Remark. If zy were real, all points z would be mapped onto the single point
w = 1, which is the reason we assumed Im(zp) # 0 in the first place.

2. Show that w = (2 — 20) /(242 — 1) in which |zo| < 1 maps |z < 1| onto
|lw| < 1 and z = zp onto w = 0.
Solution: Observe that

PO ot N Y G et C
252 — 1P 2z — 12
(=P = =)
e —1P
Hence, |z| = 1 corresponds to |w| = 1. In addition, z = zy cor-
responds to w = 0. These mean that |z| < 1 is transformed onto

lw| < 1. &

3. Let C' and C* be two simple closed contours in the z- and the w-plane,
respectively, and let w = f(z) be analytic within and on C. If w = f(z)
maps C onto C* in such a way that C* is traversed by w exactly once in
the positive sense under the condition that z describes C' in the positive
sense, then w = f(z) maps the domain bounded by C onto the domain
bounded by C*.

Solution: We denote the domains bounded by C' and C* by D
and D*, respectively. Then it suffices to prove that every point of
D* is taken exactly once if z is in D. Recall that the number n of
zeros of the function wg — f(2) in D is given by

2m% f(z) —wo

With the substitution w = f(z), f'(z)dz = dw, this is rewritten

as
1 dw

27 Jou w —wo’

where the integration has to be extended over the contour C* into
which C' is transformed by w = f(z). By the residue theorem, the
value of this expression is 1 if wq is within C* and 0 if wyq is outside
C*. This shows that every point in D* is taken exactly once and
that a value outside D* is not taken at all. This completes the
proof. &
4. Find a conformal mapping w = f(z) of the region between the two circles
|2 =1 and |z — (1/4)] = 1/4 onto an annulus a < |z| < 1.

Solution: To solve this, we have to find a bilinear transformation
that simultaneously maps |z| < 1 onto |z| < 1 and |z—(1/4)| < 1/4
onto a disc of the form |z| < a. Note that
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zZ—«
w=-—
1—a*z

maps |z| < 1 onto |z| < 1, and that
(2) 4z—1-0
) =qQq———
g 1- B4z —1)

maps |z| < 1 and |z —(1/4)| < 1/4 onto a disc of the form |z| < a.
Equating coefficients leads us to a =2 — /3. &

5. Find the bilinear transformation that maps z = 0,4, —1 onto w =1, —1, 0,

respectively.
Solution: Set [z,0,4,—1] = [w, 1, —1,0] to obtain w = —(z +7)/
(3z—1i). &

6. Show that four distinct arbitrary points on the z-plane can be mapped
through the bilinear transformation onto w = 1, —1, ¢, —c on the w-plane,
where ¢ is a complex number depending on the cross ratio A of the map-
ping. Determine an explicit form of ¢ as a function of .

Solution: Let [z1, 29,23, 24] = [1,—1,¢,—¢] to obtain ¢ = (1 +
A£2v2)/(1 =N and cieco =1. &

10.3 Applications to Boundary-Value Problems

10.3.1 Schwarz—Christoffel Transformation

In the preceding section, we discussed rich properties of the bilinear trans-
formation that can transform the upper half of the z-plane onto the unit
circle of the w-plane. Now we turn to a similar kind of important mappings
called the Schwarz—Christoffel transformation (abbreviated SC transfor-
mation), which transforms the upper (or lower) half of the z- plane onto the
inside of a m-sided polygon drawn on the w-plane. This transformation is
defined by the following integral:

w(z) =B+ zn: /Z(Z’ — ;) % (10.28)
i=1

Here 2; (1 <i < n) are n distinct fixed points along the z-axis, and the angle
0; is defined as shown in Fig. 10.7, being either positive or negative according
to whether we follow the boundary of the polygon counterclockwise or clock-
wise. (For example, 6 and 6y are positive, but 05 is negative in Fig. 10.7.)
The constant « gives rise to a magnification of that image by a factor |«]
and a rotation of that image by an angle arg(«). The constant 3 generates a
translation of the magnified and rotated image.
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LV 4
Ya
w=f(z)
=)
R P B P,
—_———————e—x >
X X, X X, 0 "

Fig. 10.7. Schwarz—Christoffel transformation of the real axis of the z-plane to a
polygon on the w-plane

Remark. If we wish to transform the upper half of the z-plane into the exterior
of the polygon in the w-plane, it suffices to define

z
w(z) =06+ a/ (2 — 272 — )™ (2 — )N
where the 6’s are assigned the same values as in the preceding case.

FEzxample The function

PR d¢
w = f(z) /\/(162)(1k2€2) (0<k<1) (10.29)

maps the upper half of the z-plane (Imz > 0) into the interior of a rectangle
on the w-plane. In fact, (10.29) is obtained by putting n = 4, 6; = 7/2 for
all i = 1,2,3,4 in the definition (10.28), followed by setting 1 = 1, zo = —1,
x3 = 1/k and x4 = —1/k, all of which are located on the real axis. The integral
in (10.29) is called an elliptic integral of the first kind.

10.3.2 Derivation of the Schwartz—Christoffel Transformation

In order to derive equation (10.28) for the Schwarz—Christoffel transformation,
we let
T <X << Ty

be points on the real axis and consider the function f(z) whose derivative is
fl(2)=alz—x) (2 —z)F2 o (2 — a,) 7Fm. (10.30)
For this function we have
arg f'(2) = argav — ky arg(z — x1) — ko arg(z — xa) — -+ - — ky arg(z — x,,).

Now, visualize the point z as moving from left to right along the real axis,
starting to the left of the point x;. When z < x1, we have
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arg(z —x1) = arg(z — x2) = --- = arg(z — z,) =7,

whereas for x1 < z < 9, arg(z —x1) = 0, the others remaining at 7. Hence, as
z crosses aj from left to right, arg f/(z) increases by kjm. It remains constant
for 1 < z < x2 and increases by kom as z crosses xo, etc. As a result, the
image of the segment —oo < z < a; becomes a straight line, the image of
1 < z < x2 being another whose argument exceeds that of the first by ki,
and so on.

If we constrain the numbers ki, -+, k, to lie between —1 and 1, then
the increments in the argument of f/(z) will lie between —7 and 7. Further,
for ky < 1,ka < 1,---,k, < 1, it is obvious that the function f(z) whose
derivative is (10.30) is actually continuous at each of the points x1,xa, - , 2.
Therefore, the image of the moving point z will be a polygonal line. Finally,
integrate (10.30) to set the equation

fz) =8+ a/ (2" —a1) " (2 —ag)F2 o (2 —a,)FrdY, (10.31)
which maps the z-axis onto a polygonal line.

Remark.

1. The sum of the exterior angles of this polygonal line is
k17r+k27r—|—--~+knw:7r2ki.
i=1

Hence, in order for the polygon to be closed, it is necessary that Z?zl
k; = 2. Particularly when k; > 0 for all i, then the polygon becomes
convex.

2. The complex constants, o and 3, control the position, size, and orientation
of the polygon. Thus § may be so chosen that one of the vertices of the
polygon will coincide with some specified point e.g., the origin. Then «
may be chosen so that one side of the polygon will be of given size and
parallel to a given direction.

10.3.3 The Method of Inversion

The Schwarz—Christoffel transformation itself is applicable to polygons com-
posed of straight lines, but not to those of circular ones. Nevertheless, combin-
ing the method of inversion, the former transformation can be extended
to regions bounded by circular arcs.
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& Inversion with respect to a circle:
An inversion transformation w = f(z) with respect to a circle |z| = a is
defined by

w=—. (10.32)

through which the interior points of the circle are mapped onto exterior
points, and vice versa.

The inversion preserves the magnitude of the angle between two intersecting
curves, but it reverses the sign of the angle. This is attributed to the fact
that (10.32) consists of two successive transformations: the first a?/z, and the
second a reflection with respect to the real axis. The first of these is conformal,
whereas the second maintains the angle but reverses its sign.

For the purpose of this section, we investigate the inversion of a circle of
radius |z| centered at z = zo # 0. This circle is expressed by

|z — 20| = [20] (10.33)

or
2z —z29(z+2") =0. (10.34)

Note that this circle passes through the origin, i.e., the center of an inversion
circle. Through the inversion (10.32), the circle (10.34) is mapped onto

a? a? a?
-zl —+— | =0.
ww* w w*

X

—a -
‘l

Fig. 10.8. Inversion of the circle |z — zo| = |z0| in (10.33) with respect to a circle
|z| = a through the mapping w = a*/z* given in (10.32)
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By multiplying ww* on both sides and putting w = u + iv, we have
a* — 2a%zpu = 0,

or equivalently,
2

_a
u = 570

This means that by the inversion, the circle (10.33) is mapped onto a straight
line parallel to the imaginary axis of the w-plane (see Fig. 10.8).

The role that inversion plays in extending the Schwarz—Christoffel trans-
formation should now be clear. Assume two interesting circular arcs such as P
and @ in Fig. 10.9 and a circle R of radius a whose center is the intersection
of the two circular arcs. Then, by an inversion with respect to R, the point
at the intersection is transformed into the point at infinity, the arcs them-
selves being transformed into the solid portions of the lines P’ and @Q’. As a
result, the Schwarz—Christoffel transformation may now be applied to these
two straight lines, whereas it may not be applied to the original circular arcs.

Exercises

1. Find a transformation that maps the upper half of the z-plane onto the
triangular region shown in Fig. 10.10 in such a way that the points z; = —1
and xzo = 1 are mapped onto the points w = —a and w = a, respectively,
and the point z3 = £oo is mapped onto w = ib.

Solution: Let us denote the angles at w; and ws in the w-plane
by ¢1 = ¢2 = ¢, where ¢ = tan—!(b/a). Since x3 is taken at
infinity we may omit the corresponding factor in (10.28) to obtain

w= ﬁ+a/oz(£+ 1)~/ (g~ 1)~/ dg = /3+a/j<£2 —1) e,
(10.35)

Fig. 10.9. Inversion of circular arcs P and @) with respect to the circle R
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—a 0 a

Fig. 10.10. Mapping of the upper half of the z-plane onto a certain limited region
of the w-plane

The required transformation may then be found by fixing the

constants « and [ as follows. Since the point z = 0 lies on the
line segment xyx2 it will be mapped onto the line segment wyws
in the w-plane, and by symmetry must be mapped onto the point
w = 0. Thus setting z = 0 and w = 0 in (10.35), we obtain § = 0.
An expression for a can be found by considering the region in
the w-plane in Fig. 10.10 to be the limiting case of the triangular
region with the vertex ws at infinity. Thus we may use the above,
but with the angles at wy and ws set to ¢ = 7/2. From (10.35),
we obtain w = ozfoz(l/\/f2 — 1)d¢ = iasin~! z. By setting z = 1
and w = a, we find ia = 2a/7, so the required transformation is
w=(2a/m)sin"'z. &

2. Find the conformal mapping that transforms the interior of the circle
|z| < 1 to the interior of a polygon on the w-plane, subject to the condition
that the points z1,z9,---,2, lying on the circle |z| = 1 are mapped,
respectively, onto the vertex wy,ws, -+ ,w, of the polygon.

Solution: Consider first the transformation
(o) =~ (10.36)

zZ—1

which maps |z| < 1 onto Im7 > 0. Tt yields



10.3 Applications to Boundary-Value Problems 331

a2 an T—T<:M P — ceen
dz (2 —1)2 d Ll P (j=1,2,--- ,n).
(10.37)

Next, we assume that through (10.36), the points 21, 22, - - - 2,, are
mapped, respectively, onto the points 71,7, ,7, that are lo-
cated on the line Im7 = 0. Then, the transformation that maps
Im7 > 0 onto the interior of a polygon on the w-plane is given by
w = w(7), whose derivative reads

dw

e a(r — ) F/M = (7 = ) k2/m=1 (g /)L
(10.38)
Here k; is the internal angle of the polygon at the ith vertex, which

satisfies """ | k; = (n = 2)m. From (10.37) and (10.38), we have

dw 20 1 (21 — 2)B/M =1 (g, — z)(n/m)—1

dz (z—14)2 22 (z—i)=2(z, —d)ka/M=1 ... (z, —i)(kn/m)—1"

Replace (a/2)(z; — i)' =F1/m) ... (2, —i)1=Fn/™) by o to obtain
the final result:

w=f(z) = a/ (21 = Q"M (2 = O E/D7 NG+,
20

where a(#£ 0), 3 are complex constants and zg # 21, - ,2,. o
3. Prove that the function

(10.39)

z 1
w=sG)= [ T
maps the unit circle on the z-plane onto a regular hexagon on the w-plane.
Solution: Observe that €6 —1 = (£ &)+ (£ —&) with [§;] =1
(j = 1,---,6). Similarly to Exercise 2 above, we map |z| < 1
onto Im7 > 0, and then let the points 7q,---7¢ located on the
line Im7 = 0 correspond to &1, - - - &s. Then, by setting n = 6 and
k; = (2/3)m for all j, we see that the transformation (10.39) maps
|z| < 1 onto a regular hexagon on the w-plane, (/2/6)I"(1/3) on
a side.

4. Suppose that ¢(z) satisfies the Laplace equation and let w = f(z) be a
conformal mapping. Then, show that the function

p(w) = ¢(u,v)
also satisfies Laplace’s equation in the w-plane; i.e.,

% 0%
w + W =0. (10.40)



332 10 Conformal Mapping

Solution: Since x = x(u,v), the partial derivative d/dz can be
rewritten as 0/0x = u,(9/0u)+v,(9/0v), where u,, = du/dz and
v, = Ov/0x. Tt yields

2

0x2 ou ov ou ov
0% 0% 0%
. 2 0% 2 0%
(uz) Ou? (ve) Ov? 2ugve Oudv’ (1041)

Similarly, we have

¢ 2 02¢ 2 00 %9
g~ ) g T ) G g,
0%¢ 0%¢ 0%
_ 2 079 2070 09
= (v) P2 + (ug) 52 203Uy, 5udy’ (10.42)

where we have used the Cauchy—Riemann relations: u, = vy, uy =
—u,. Adding up the sides of the second lines of (10.41) and (10.42),
we obtain

Py o 2 2] (P9 | 079

The quantity inside the square brackets is equal to | f'(2)|?, which
is nonzero for analytic functions f(z). As a consequence, we con-

clude that
0%¢  0%¢ ¢  0%¢
Ox? + oy? 0 ou? = o2 0. &

10.4 Applications in Physics and Engineering

10.4.1 Electric Potential Field in a Complicated Geometry

The Schwarz—Christoffel transformation is useful in mathematical physics,
since it can be used to solve two-dimensional Laplace equations under
certain boundary conditions. In fact, there are many physical systems that are
described by Laplace’s equation subject to Dirichlet or Neumann bound-
ary conditions. For example, Laplace’s equation can be used to describe
heat conduction in a uniform medium, nonturbulent fluid flow, and an elec-
trostatic field in a uniform system. In this subsection, we demonstrate how
the Schwarz—Christoffel transformation works efficiently to solve such two-
dimensional Laplace equations. It should be emphasized that our method is
independent of the physical system being described. In the meantime, we
apply the transformation to problems in electrostatics in order to illustrate
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the method of solution, bearing in mind that that these techniques are also
applicable to problems involving other physical systems.

The general procedure for determining the electrostatic potential by us-
ing conformal mapping methods involves transforming a complicated charge-
distribution geometry in the z-plane into a simple geometry in the w-plane.
After solving the problem for the simpler geometry, the inverse transformation
to the z-plane is applied to obtain the potential for the original geometry.

As a concrete example, we consider a metal block with a cut out wedge of
angle v as shown in Fig. 10.11. There is a vacuum inside the wedge. The block
extends to £oo in the direction perpendicular to the plane of the page. Since
charge moves freely inside a metal, all of the charge placed in the conductor is
distributed in such a way that the potential at all points along these edges is
the same. We denote this potential by ¢, i.e., the system under consideration
is subject to the Dirichlet boundary conditions given by

d(r,0=0) = ¢(r,0 =v) = ¢o. (10.43)

Fig. 10.11. Wedge cut of a metal

Our objective is to evaluate the potential ¢(z) at points in the vacuum
region inside the wedge (defined by 0 < arg(z) < «). This potential satisfies
the Laplace equation, and thus, it can be determined by conformal mapping
methods. For this purpose, we attempt to find the mapping that transforms
the wedge in the z-plane onto the real axis of the w-plane. We know that
the transformation of the real axis in the z-plane onto the wedge shown in
Fig. 10.11 is given by the Schwarz—Christoffel transformation:

w=0+alz— xl)*el/“.
Therefore, the inverse mapping
1 —m/01
z=1x1+ [a(w - ﬂ)] (10.44)

transforms the wedge in the w-plane with an internal angle —#; onto the
real axis of the z-plane. By interchanging z and w in (10.44), we obtain the
mapping
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w=uy + B(z - ﬂ)} o : (10.45)

which transforms the wedge in the z-plane onto the real axis of the w-plane.
In order to apply this mapping to the configuration shown in Fig. 10.11, we
set

1
7:_917 ’lj,l:ﬁ:O, and 7:17
!
where « is real. Then, the mapping in (10.45) becomes

w=z"". (10.46)

Remark. Tt immediately follows that the mapping in (10.46) transforms the
space within the wedge onto the upper half of the w plane. This is because
points within the wedge that satisfy the condition 0 < arg(z) = 6 < ~ are
mapped onto w = r7/7e /7 whose argument w6/~ takes values in the inter-
val (0, ).

Remember that the Dirichlet boundary condition is invariant under conformal
mappings. Hence, the boundary condition of (10.43) is mapped to

¢(u,v = 0) = ¢o, (10.47)

where v = 0 is the image of the wedge. As noted earlier, the mapping
in (10.46) transforms the problem of finding the potential in the region
within the wedge in Fig. 10.11 to that of finding the potential in the up-
per half of the w plane due to a flat metal surface that extends along the
entire u-axis and is maintained at a potential ¢y by a uniformly distributed
charge.

We now consider the “mapped” Laplace equation for the w-plane. Since all
points on the surface of the flat plane are at the same potential, the potential
all points (u,v) located at the same distance v above the plate is the same.
Thus, the potential at any point must be independent of the value of u and
the Laplace equation in the w-plane becomes

d*¢
W - O.

Integration of this differential equation followed by application of the bound-
ary condition (10.47) yields

d(v) = ¢o + cv. (10.48)

The constant c¢ is obtained by using the property that the derivative of the
potential (i.e., the electrostatic field) is a constant for a charged flat plate.
Similar to ¢g, the value of this constant field Ey depends on how much charge
is distributed over a given area on the plate. With reference to (10.48),
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oo
o

In order to complete the analysis, the potential must be expressed in terms
of the coordinates in the z-plane. From this expression

¢ = —FEp, sothat ¢(v)=¢o— Epv.

v =Im(w) =Im (r”/ve”em) = 7™/ sin(76 /),
the potential is given by
¢ = ¢o — Eor™ sin(n6/)

= 60— B (22 +32)" " sin H tan—1 (i)] . (10.49)

This is the final solution to the problem in question. We see from (10.49) that
¢ = ¢(r,0) is constant when

/7 sin(w6 /) = const.

This is the equation for a family of equipotential curves.

10.4.2 Joukowsky Airfoil

Our final discussion related to the applications of conformal mappings con-
cerns the Joukowsky transformation, which is an important conformal

2k
[z=zol = 11—z
o 1F
X
©
Py
g
S ok
®
E
-1}
-2 1 N 1 N 1 N 1 N ]
-2 -1 0 1 2
Real axis

Fig. 10.12. The Joukowsky transformation (10.50) of the circle |z — zo| = |1 — 20|
with zo = (—0.2,0.2) to the airfoil indicated by the thick curve
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mapping that has been historically employed in the theory of airfoil design.
Here, the term “airfoil” refers to the cross-sectional shape of a wing (or a pro-
peller or a turbine). According to the literature on airfoil theory, any object
with an angle of attack in a moving fluid generates a lift, a force perpendic-
ular to the flow. Airfoils are designed as efficient shapes that increase the lift
that the object generates. The Joukowsky transformation maps a circle on
the complex plane into a family of airfoil shapes called Joukowsky airfoils,
which simplify the analysis of two-dimensional fluid flows around an airfoil
with a complicated geometry.
The Joukowsky transformation w = f(z) is defined by

w=f(z)=2+ %, (10.50)

where z is located on a circle C' that passes through the point z = 1 and
encloses the point z = —1 as well as the origin z = 0. Note that the center
of the circle, denoted by zp, does not coincide with the origin, but is located
close to the origin. In fact, the coordinates of zy are variables, and changes in
these variables alter the geometry of the resulting airfoil. An example of an
airfoil generated by the transformation (10.50) is shown in Fig. 10.12, where
zo = (—0.2,0.2). We see that the circle C': |z—zg| = |1—2]| is mapped onto an
airfoil indicated by a thick curve. The stream lines for a flow around the airfoil
can be obtained by applying an inverse transformation to the streamlines for
a flow around the circle and the latter can be easily evaluated.
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Fourier Analysis
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Fourier Series

Abstract A Fourier series is an expansion of a periodic function in terms of an
infinite sum of sines and cosines. The use of a Fourier series allows us to break up an
arbitrary periodic function into a set of simple terms that can be solved individually
and then recombined in order to obtain the solution to the original problem with
the desired level of accuracy. In this chapter, we place particular emphasis on the
mean convergence property of a Fourier series (Sect. 11.2.1) and the conditions
that are necessary for the series to be uniformly convergent (Sect. 11.3.1). Better
understanding of convergence properties clarifies the reasons for the utility and the
limit of validity of Fourier series expansion in mathematical physics.

11.1 Basic Properties

11.1.1 Definition

Fourier series are infinite series consisting of trigonometric functions with a
particular definition of expansion coefficients. They can be applied to almost
all periodic functions whether the functions are continuous or not. With these
expansion, physical phenomena involving some periodicity are reduced to a
superposition of simple trigonometric functions, which helps us a great deal
in arithmetic and practical aspects. I section We begin this with a description
of the basic properties of Fourier series. We follow this by considering the
convergence theory of Fourier series, which is the issue in the next section.

First of all, it is important to clarify the distinction between the following
two concepts: trigonometric series and Fourier series.

& Trigonometric series:
The series
Ao

5 + nzl (A, cosnz + By, sin nx)

is called a trigonometric series.



340 11 Fourier Series

Here the set of coefficients {A,} and {B,} can be taken arbitrarily. (The
expression Ag/2 instead of Ap is just due to our convention.) Among the
infinite choices of {4, } and {B,}, a specific definition of the coefficients noted
below provides the Fourier series of a given function f(z).

# Fourier series:
The series

o0
a?() —|—nz::1(an cosnx + by, sin nx) (11.1)

is called a Fourier series of a function f(x) if and only if the coefficients
are given by the Euler—Fourier formula expressed by

1 us
ap = — f(z) cosnzdz,
T J)—x
1 [7 .
(i = = f(z)sinnzdz. (11.2)

Accordingly, a Fourier series is a specific kind of trigonometric series whose
coefficients bear a definite relation (11.2) to some function f(z). In (11.1) we
have written the constant term as ag/2 rather than ag, so that the expression
for ag is given by taking n = 0 in (11.2). There is no by for sin(0 - ) = 0.

By definition, every Fourier series is a trigonometric series. However, the
converse is not true, as demonstrated below.

Ezample Tt is known that the trigonometric series given by

is not a Fourier series. Indeed, no function can be related to the coefficient
1/logn via (11.2).

11.1.2 Dirichlet Theorem

Emphasis should be placed on the fact that the definition of Fourier series
provides no information as to its convergence; thus the infinite series (11.1)
may converge or diverge depending on the behavior of the function f(x).
This leads us to discuss which functions f(x) make the series (11.1) conver-
gent. This issue is clarified in part by the following theorem (and by referring
Fig. 11.1):
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£ 76

Sx)
/’\\\\5_’, —Ti——’o

(a) (b) ()

Fig. 11.1. (a) Continuous and smooth function. (b) Continuous but nonsmooth
function. (c¢) Function with a finite number of discontinuities

# Dirichlet theorem:
If f(z) is periodic with the period 27 and if f/(z) is continuous or at

most have a finite number of discontinuity in [0, 27], then its Fourier series

converges to

1. f(z), if x is a point of continuity, or

, f@+0)+fz—0)
’ 2

, if z is a point of discontinuity.

The set of conditions noted above is called Dirichlet’s conditions. It is wor-
thy to note that the Dirichlet conditions are sufficient but not necessary. That
is, if the conditions are satisfied, the convergence of the series is guaranteed;
but if they are not satisfied, the series may or may not converge. An exact
proof of Dirichlet’s theorem requires rather complicated calculations, which
will be demonstrated in the next section.

Remarks.

1. The Dirichlet conditions do not require the continuity of f(z) within
[0, 27].

2. Almost all periodic functions that we encounter in physical problems sat-
isfy the Dirichlet conditions; therefore, the Fourier series expansion can
be used almost regardless of its convergence.

It follows that if f(z) is continuous within [0, 27] and satifies Dirichlet’s con-
ditions, then the Fourier series of f(x) converges to f(z) at all the points
within [0, 27]. This means that the Fourier series of f(x) converges uniformly
to f(x). Once uniform convergence is ensured, we generally write

ap = :
f(z) = 5+ Z (ay, cosnzx + by, sinnx) (11.3)

n=1
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with the definition (11.2) for the coefficients. Consequently, if we form the
Fourier series of f(x) without first examining its convergence to f(x), we
should write

f(z) ~ Y + Z (ay, cosnx + by, sin nx) (11.4)

2

n=1
instead of (11.3). The symbol “~” in (11.4) means that the series on the right-
hand side only corresponds to the function f(x) and can be replaced by the
equality “=" only if we succeed in proving that the infinite series converges

uniformly to f(z).

11.1.3 Fourier Series of Periodic Functions

Preceding arguments were limited to the case of periodic functions with pe-
riod 27. But Fourier series expansions can apply to periodic functions whose
periods differ from 27. This is seen by replacing z in (11.3) by (27/A)z, which
transforms a series convergent in the interval [0, 27] to another series conver-
gent to [0, \]. The resulting Fourier series is

= ?O (an cos nkx + by, sinnkx) (11.5)
n=1
where k = 27 /X and
2 [ 2 [
= X/ f(x) cosnkxdr and b, = X/ f(x) sinnkxdz. (11.6)
0 0

Obviously, these latter expressions can be reduced to the original definitions
(11.1) and (11.2) by setting A = 2.

The expressions (11.5) and (11.6) become more concise by imposing the
relations

einka: + efink:w einkx _ efink:r

cos(nkx) = 5 , sin(nkz) = 5
i

Then the Fourier series reads
_ap n i an — by, ginke i a, + b, o—inka (11.7)
- 2 n=1 2 n=1 2 . ‘
We rewrite the index n in the second sum by —n’ to find

i (‘L"'Hb") o—inkz _ i (G—"'Hb—”) pin'ke
2 2

n=1 —n/=1

f (an/ B Zb”') ein’km7
2

n'=—1
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where the identities a_,, = a, and b_,, = —b, were used. As a result, we
obtain a complex form of the Fourier series as

f(ﬂf)w(zo—&-i(%) einke | Z < n — ibn )einkm

n=1 n=—1

D> caem, (11.8)

n=—oo

with the definition
(11.9)

An explicit form of ¢, is given by substituting the definition of a, and b,,
given by (11.6), into (11.9) as

{ /f cosnk;vd:r——/ f(z) sin(nkz)d }

= %/O fz)e mredy, (11.10)

11.1.4 Half-range Fourier Series

Fourier series expansions sometimes involve only sine or cosine terms. This
actually occurs when the function being expanded is either even [f(—z) =
f(z)] or odd [f(—x) = —f(x)] over the interval [—A/2,)/2]. When a given
function is even or odd, unnecessary work in determining Fourier coefficients
can be avoided. For instance, for an odd function f,(x), we have

A/
an, = / i fo(x) cos(nkx)dx

0 A/2
{/ fo(x) cos(nkx)dx + folx) cos(nkx)dx}

—)\/2 0

0
(n=0,1,2,---,) (11.11)

2/2 A/2
{ fo(x) cos(nkx)dx + fol(x) cos(nk:x)dx}
0

and

—)/2 0

0 A/2
by, = ; {/ fo(x) sin(nkx)dx + folx) sin(nkm)dm}

>

A/2
/ fo(z)sin(nkz)dz (n=0,1,2,---,). (11.12)
0
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Here we used the identities cos(—nkx) = cos(nkz) and sin(—nkz) = — sin(nkz).
Accordingly, we have

folz) ~ i by, sin(nkx),
n=1

which is called the Fourier sine series.
Similarly, in the Fourier series corresponding to an even function f.(x),
the same process yields

an =+ fe(x) cos(nkx)dx (n=0,1,2,-) (11.13)
0

and b, = 0 for all n. Accordingly, the Fourier series becomes
fe(z) ~ G?O + ; ap, cos(nkz),

which is called the Fourier cosine series.

Note that a, and b, given in (11.12) and (11.13) are computed in the
interval [0, A/2], whose width is half of the period A. Thus, the Fourier sine or
cosine series of an odd or even function, respectively, is often called a half-
range Fourier series. As discussed later, half-range Fourier series expansion
is important from a practical viewpoint because it enables us to expand a
nonperiodic function within its domain.

& Theorem:
If f(z) is an even or odd function and it is periodic with period A, then
the Fourier coefficients a,, and b,, become

an = () cos(nkx)dx, b, =0 if f(x)is even
0
and
4 (M : :
an =0, b,= X (x) sin(nkx)dz if f(x) is odd.
0

11.1.5 Fourier Series of Nonperiodic Functions

A problem that arises quite often in applications is how to apply a Fourier
series expansion to a function f(z) that is defined only on the interval [0, L].
In this case, nothing is said about the periodicity of f(x). However, this does
not prevent us from writing the Fourier series of f(x), since the Euler—Fourier
formulas (11.2) involve only the finite interval.
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X L

-L 0 L

Fig. 11.2. Functions f.(z) and f,(z) defined in (11.14) and (11.15), respectively

As an example, we try to expand the function
f(z) =z for [0, L]

as a Fourier series. In this case, f(z) is not periodic, but we can make it
a periodic function by extending it as an even or odd function over [—L, L]
and periodic with period 2L. The respective definitions of f.(z) and f,(x) in

[—L,L] are
£ o) —zr for —L<xz<0, (11.14)
o(x) = )
z for 0<ax<L

and
folx)=a for —L<az<L, (11.15)

whose profiles are shown in Fig. 11.2.
First, we consider the case of the even function f.(z). In terms of the
Fourier cosine expansion, the coefficients ag and a,, are given by

—4L
2 [F 2L [(-1)" — 1 =13
an = Z/o fe(x) cos(nkz)dx = ﬁi[( 7)12 I _ ) nPr ,
0, n=24,---
2 L
ag = Z/o zdx = L.
Here we have used kL = 7. Hence, the cosine series becomes
L 4L & 1 (2n — 1)z
==-—- = . 11.16
f@)=5-0 L1 L (11.16)

The partial sums of the series given in (11.16) are illustrated in Fig. 11.3.
Although the original function f(z) is defined only within the interval [0, L],
the resulting Fourier series produces not only f(z) in [0, L], but also the even
extension f.(z) with fe(x) = fe(z + 2L).

Second, we look at the sine series of f, given by (11.15). In this case,

: n
b = % /0 folz) sin(nkz)dr = 2L (=1)"+

m n
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10}
> 5F
o+
-10 -5 0 5 10
X

Fig. 11.3. A partial sum on the right-hand side of (11.16)

and the sine series is

~——— sin(nkx). (11.17)

Figure 11.4 shows some partial sums of (11.17). As in the case of even ex-
tension, the Fourier series produces the odd extension f,(z) with f,(x) =
fe(x 4+ 2L).

101
5+
> of
—5F
—10f
—‘iO —‘5 6 5 10
X

Fig. 11.4. A partial sum on the right-hand side of (11.17)

11.1.6 The Rate of Convergence

We have had two kinds of Fourier series representations for f(z) = x in the
interval [0, L]. This poses the following question: Does it make any difference
which kind of Fourier series, (11.16) or (11.17), we use to represent f(z) = x
in the interval [0, A/2)7 Yes, it does. In the above-mentioned case, the even
extension f.(x) is more suitable than the odd extension f,(z) for following
two reasons.
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The first reason concerns the rate of convergence of the resulting Fourier
series. The coefficients given in (11.16) go as 1/(2n — 1)2, whereas those in
(11.17) go as 1/n. Thus, the former series converges more quickly than the
latter. The difference in the rate of convergence is due to the fact that the
periodic extension of f.(z) is continuous, but that of f,(x) has discontinuities
at odd multiples of L. In general, the Fourier coeflicients of discontinuous
functions decay as 1/n, whereas those of continuous functions decay at least
as rapidly as 1/n%. These observations as to the rate of convergence of the
coefficient with respect to n can be formulated as follows:

& Theorem:

If f(z) and its first k& derivatives satisfy the Dirichlet conditions on the
interval [0,\] and if the periodic extensions of f(x), f'(z),---, f*~V(z)
are all continuous, then the Fourier coefficients of f(z) decay at least as
rapidly as 1/n*+1.

The second reason is that the Fourier series representation corresponding to
the odd extension f,(z) exhibits a small discrepancy from the original function
f(x) around points of discontinuity of f,(x). This discrepancy is a Gibbs
phenomenon, illustrated in Sect. 11.3.5. When an extension generates points
of discontinuities, a Gibbs phenomenon will inevitably occur, which makes
the resulting Fourier series representation highly unreliable in the vicinity
of the discontinuity. Consequently, when performing half-range expansions of
nonperiodic functions, the way of extension that renders the resulting function
continuous (and smooth) over its domain is preferred.

11.1.7 Fourier Series in Higher Dimensions

It is important to generalize the Fourier series to more than one dimen-
sion. This generalization is especially useful in crystallography and solid-state
physics, which deal with the three-dimensional periodic structures of atoms
and molecules. To generalize to N dimensions, we first consider a special
case in which an N-dimensional periodic function is a product of N one-
dimensional periodic functions. That is, we take the N functions f\)(x)
[j=1,2,---,N] with period Lj;:

9 (z) = Z cDe?mine/Ls i1 9 ... N,.

n=—oo
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Let us define F(r) by the product of all the N functions f)(x;)
F(r) = fO(a1)f® (@) - f(N)(xN)

=22 Z (D@ . ) . Bmilmaas/Lut e /L)

niy n2

= Cre™T, (11.18)
k

where we have used the following new notation:

O = cDe® (M)

ny N2 nnN ?
k = 27‘1’(’!L1/Ll,712/L2,'"n]\//LN)7

T = ($1,$2,"' axN)'

We take (11.18) as the definition of the Fourier series for any periodic function
of N variables. The definition of the coefficient C} can be developed for a
general periodic function F(r) of N variables:

r) = ZCkeik'r = Cp= é/vF(r)e_ik'rde, (11.19)
k

where V' = LiLy--- Ly determines the smallest region of periodicity in IV
dimensions. When N = 1 (11.19) obviously reduces to the Fourier series in
one dimension.

Remark. The application of (11.19) requires some clarification regarding the
region V of the integral. In one dimension, the shape of the smallest region of
periodicity is unique, being simply a line segment of length L. In two or more
dimensions, however, such regions can have a variety of shapes. For instance,
in two dimensions, they can be rectangles, pentagons, hexagons, and so forth.
Thus, we let V in (11.18) stand for a primitive cell of the N-dimensional
lattice. This cell in three dimensions, which is important in solid-state physics,
is called the Wigner—Seitz cell.

Recall that F(r) is a periodic function of 7. This means that when 7 is changed
by R, where R is a vector describing the boundaries of a cell, then we should
get the same function: F'(r + R) = F(r). This implies that the periodicity of



11.1 Basic Properties 349

F(r) requires the vector k to take only restricted directions and magnitudes.
In fact, when replacing 7 in (11.19) by r + R, we have

_ cheik-(r+R) _ Z (eik-R . Okeik-r) ,
k

k
which is equal to F(r) if
e®B =1 e, k-R=2rx (integer). (11.20)

Equation (11.20) is a key relation in determining the allowed directions and
magnitudes of the vector k. In one-dimensional cases, the inner product re-
duces to k- R = (27n/L) - L = 27n; thus (11.20) obviously holds true. In
three dimensions, the vector R is represented as R = mja; + moas + msas,
where my, msy, and ms are integers and ai, as, and as are crystal axes,
which are not generally orthogonal. Hence, condition (11.20) is satisfied when
k = n1by + nobs + n3bs, where ny, no, and ng are integers and by, by, and bs
are the reciprocal lattice vectors defined by

27T(G,2 X a3)

by = A2 X A3) oy,

27‘(’((13 X 0,1) 271'((11 X ag)
) ) 3 = .
a; - (a2 X as) a; - (a2 x as) a; - (a2 X as)

In fact,
3 3 3
= <Z nzbl> . ijaj = anm]bl . aj,
i=1 j=1 7

and the reader may verify that b; - a; = 276;;. Thus we obtain

3
k-R=2r Z m;n; = 27 X (integer).
j=1

Exercises
1. Expand the following functions in Fourier series:

(i) f(x) =sinaz on [—7, |, where a is not an integer.

(ii) f(z) =sinazx on [0, 7], where a is not an integer.

Solution: It is straightforward to obtain the results:

nn sin nx

(i) sinazx = — Sm am Z

22
—n
n=1
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1 — cosar 1 cos 2nx
. . — PP 2 49
(ll) smaxr — [ E 2]

N 2a1 + cosarm Z cos(2n + 1)z

.
2 _ 2
™ —a?—(2n+1)

2. Expand the functions f(z) = cosz on [0, 7] in a Fourier sine series.

8 <~ nsin 2nz
Solution: cosx = — _
whion wzjl o1 *

3. (i) Find the Fourier series of f(x) = z on the interval [—, 7].

1 1 1
(ii) Prove that the identity % =1- 3 + ET % + -
Solution:
. — 2(—1)"+!
(i) f(z)= nz::l ——, ——sinna.

(ii) If we substitute x = w/2 in the series, we obtain

f—i n+1smn—ﬁ—2 1—1—&-1—}4--
2 & 2 35 7 ’

which obviously gives the desired result. &

4. Expand the function f(z) = 22 into the Fourier cosine series on the do-
2
m

o0
1 us
main [—7, 7| and then prove that — = — .
[, 7] p ; o 3

o0
4(-1)"
Solution: Straightforward calculations yield 2% = E ( 2) COS Nx.
n

n=1
By substituting x = 7 and « = 0, we obtain the desired equa-

tions.

5. Determine both the cosine and sine series of f(x) = 2® — 2 defined on the
interval [0, 1]. Which series do you suppose converges more quickly?
Solution: We may set the even and odd extensions of f(x) over
[—1, 1], respectively, as
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fo(as):x3—x for -1 <z <1,

and
2342 for —1<2z<0,
fe(z) =

23—z for 0<z<1.

It follows that f,(x) is smoother than f.(z); namely, f.(x) has a
discontinuity in its derivative at +n. This implies that the sine se-
ries converges more rapidly than the cosine series. In fact, straight-
forward calculations yield the sine series

folx) = 71% Z (—nls)” sin(nmx)
n=1

and the cosine series

felz) = _i_,_% Z { 1+ (71—21)"2 n n467r2 1- (—1)"]} cos(nmx).

The continuity of f,(x) and its first derivatives leads to Fourier
coefficients that decay as 1/n®, whereas the continuity of f.(z)
coupled with the discontinuity in f’_(x) leads to Fourier coeffi-
cients that decay as 1/n%. &

11.2 Mean Convergence of Fourier Series

11.2.1 Mean Convergence Property

We know that Fourier series are endowed with a specific class of convergence
called mean convergence (or convergence in the mean). This converging
behavior is expressed by an integral:

N 2
lim fla)= Y ene™ | du =0, (11.21)
n=—N

A
N—o0 0

Equation (11.21) applies regardless of the continuity and smoothness of the
function f(x), as far as f(z) is square-integrable.
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Remark. From the viewpoint of Hilbert space theory, the relation (11.21)
comes from the completeness property of the set of functions {e™**} in the
sense of the norm in the L? space. The L? space is a specific kind of Hilbert
space that is composed of a set of square-integrable functions f(z) expressed

by ,
/ |f(z)2dz < oc.

The inner product (f,g) and the norm ||f|| of elements f,g € L?, respec-
tively, are given by

/f e and ||f] = (£, f) /|f d.

The mean convergence of the Fourier series [i.e., the equality in (11.21)] holds
even when the integrand in (11.21) has a nonzero value at discrete points of
x. This comes from the fact that the definition of the mean convergence is
determined through integration, and that a finite number of discontinuities
of the integrand do not contribute to the result of its integration. This is
explained schematically in Fig. 11.5, in which we find

f(x): a continuous function,

g (x): a series that converges uniformly to f(z)
except at a point of discontinuity =z = a.
¢'®(x): a series that converges uniformly to f(z)
except at points of discontinuity x = a1, a9,as, - -.

As shown in Fig. 11.5, these three functions are distinct from one another.
However, if we integrate the squared deviation between two of them followed
by taking the limit n — oo, we have

f(x) g (%) 8% ()

n increases

— a

(@) (b)

Fig. 11.5. Sketches of a continuous function f(z), a series of functions gfI )( )
converging to f(z) except at a dlscontlulty, and a similar series of functions g (z)

having several discontinuities. Series {g\"” ()} and {gi"” (z)} both converge in the
mean to f(x)
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A A
lim If(z) — ¢V(2)|?de = lim |f(z) — ¢P(x))?dz =0. (11.22)
n—oo 0 n—oo 0
This is because the area surrounded by two of them vanishes with n — oo, i.e.,
the area right below (or above) points of discontinuity are zero owing to their

discreteness. Thus, the series g )( ) and g )( ) both converge to f(x) in the
mean regardless of their discrepancy from f(x) at points of discontinuity.

11.2.2 Dirichlet and Fejér Integrals

It is pedagogical to give an alternative exposition of mean convergence of
Fourier series, which is based on the two important concepts: Dirichlet’s
integral and Fejér’s integral.

Consider the partial sum Sy (z) of the Fourier series of f(x) expressed by

N
_ § cnemkx
n=—N

and its arithmetic mean

1

N+1(SO+S1+ -+ SN). (11.23)

on(z) =
After some algebra, we obtain their integral representations as given below
(see Exercises 1 and 2 in 11.2.2 for references).

& Dirichlet integral:

I cos(Nkt) — cos{(N + 1)kt}

Sn(@) =3 ft+a) 1 — cos(kt)

dt. 11.24
: (11.24)

& Fejér integral:

A/2 2 N+1 Lt
—————dt. 11.25
O-N(x) N—|— 1 A /)\/2 SlIl kt ( )

Remark. Note the distinctive difference between the convergence of Sy and
that of on. Whereas limy_.o, Sy = S implies oy — S, the converse does
not generally hold true; in fact, oy may converge even when Sy diverges.
A typical example is the case of the numerical sequence w,, = (—1)", where,
SN = > u, does not converge because Sony = 0 and Soni1 = 1, whereas
on =Y.5,/(N +1) converges to 1/2.
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By putting f(z) =1 in (11.25), we have the following notation:

& Dirichlet kernel: The function

1 sin? MFLt
Dy (t) = . 2 11.26
N () N+1 sin? skt ( )
is called the Dirichlet kernel, which satisfies the identity:
1=- Dy (t)dt. (11.27)
AJ a2

The derivation of the identity (11.27) is straightforward. When f(x) =1, we
have f(t+2) =1, ¢g =1, and ¢,, = 0 (|n] > 1), which obviously yield Sy =1
for arbitrary N and thus oy = 1. Substitute this into (11.25) to obtain the
identity (11.27). Figure 11.6 plots the behavior of Dy (¢) with increasing N;
it shows maxima at ¢ = 0,£\, £2\, -+, and the magnitude of the maxima
become singular when N — oo.

From (11.25) and(11.27), we arrive at the key relation

on(@) — () = 5 / U0 = s@) Doy (11.28)
—)/2

If f(z) is continuous (piecewise, at least), the integral in (11.28) can be made

arbitrarily small by taking a sufficiently large N (see Exercise 3 below). To

be precise, there exists an m for each € > 0 such that

20 e— =1
I — 3
[ — 20
15
> L
10
5_
L = a a
0- " 1 "
) —2 0 2 4
X

Fig. 11.6. Dirichlet’s kernel Dy (¢) defined in (11.26)
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N>m = J|on(x)— flz)] <e. (11.29)

This clearly means that oy (z) converges uniformly to f(z) if f(x) is contin-
uous.

As is shown later, the result (11.29) immediately yields the mean conver-
gence of the Fourier series to f(x).

11.2.3 Proof of the Mean Convergence of Fourier Series

We are now in a position to prove the mean convergence property of Fourier
series.

The function oy (x) can be expressed as a trigonometric polynomial,
since it consists of N’s trigonometric polynomials Sg, S1, -+, Sy as given by
(11.23). Hence, (11.29) implies the existence of a trigonometric series that con-
verges uniformly to f(x). [This is simply Fejér’s theorem (see Sect. 11.3.2).]
Thus we have

N
on(@)= Y e,
n=—N

where all the coefficients {,,} have to be determined.
We now make use of the fact that for any choice of {7,}, the inequality
2

A A
I e
0 0

holds true with the Fourier coefficients {c,} of f(z). (See the discussion in
Sect. 11.2.4 for the proof.) Taking the limit N — oo yields

N

f(a:)— Z ,yneinkac

n=—N

2
dx

N
f(S(})— Z cnemkx
n=—N

A 2

A
. 2 .
— >
i ; |f(2) — on(2)] dfvalgnoo/o

N
f(.’E)— Z cneinkw

n=—N

da. (11.30)

Let f(z) be continuous (piecewise, at least). Then the left-hand side vanishes
owing to the uniform convergence of oy (z) to f(x) at continuous points = of
f(x) (A finite number of discontinuous points of f(x) makes no contribution
to the integral.) Eventually, we come to the desired conclusion:

2
lim dr =0,

A
N—oc0 0

N
f(LIJ)— Z cneinkr
n=—N

which is a restatement of (11.21).
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11.2.4 Parseval Identity

The mean convergence property of Fourier series can be represented by a
more concise expression, called the Parseval identity. We first note the
main conclusion of this subsection and then go on to its proof. For simplicity
of notation, we use the following short form:

A
5 e @ =),

& Parseval identity:
A necessary and sufficient condition for the mean convergence of the
Fourier series of f(z) is given by

o

(fih) = leal”,

n—=—oo

which is called the Parseval identity.

To prove the above statement, we assume f(z) to be square-integrable and
consider the total squared error of f(x) relative to the series of exponential

functions:
1 )\
En =~
v A/0

whose variables are N and the sequence {7, } consisting of complex numbers.
Term-by-term integration of (11.31) yields

N 2
flz) — Z V€| i, (11.31)
n=—N

N N
Ex = ()= X (Fe™) = 3 (fe)
n=—N n=—N
N . .
+ Z ,Y;kn,yn (eznkm’ ezmkx)
mn=—N
N N
=)= Y (hen+meh)+ D Vi
n=—N n=—N
N N
=N+ D =l = > el (11.32)
n=—N n=—N

Here we have used the orthonormality of imaginary exponentials, (ei"’”,
im’”) = 0mn, as well as the definitions of the Fourier coefficient ¢, =
(f, ei"’”). Note that (f, f) appearing in (11.32) is nonnegative because

e
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A
(f.f)= %/0 |f(x)[2dz > 0.

Hence, £y becomes minimal when ~,, = ¢, and its minimum value reads
N
min{En} = (£, ) = Y leal” (11.33)
n=—N
We are now ready to complete our proof. Recall that the mean convergence
of the Fourier series for f(x) is defined by

2
lim dz = 0. (11.34)

A
N—o0 0

N
f(l‘)— Z cneinkz
n=—N

From (11.31) and (11.33), we see that the definition of the mean convergence
(11.34) is rewritten as

A}im min{Ey} =0, (11.35)
or equivalently,
[e.e]
(£ )= D leal (11.36)

Relation (11.36) is thus a necessary and sufficient condition for satisfying
the mean convergence of the Fourier series to f(x). Since Parseval’s identity
applies to any square-integrable function f, Fourier series for the functions f
surely converge in the mean to f(z).

11.2.5 Riemann—Lebesgue Theorem

As by-products of the argument in 11.2.4, we obtain the following two impor-
tant properties regarding the Fourier series expansion. The first is the Bessel

inequality
N

I EDN (11.37)

n=—N
This is obtained from the fact that min{Ex} given in (11.33) is nonnegative.
Here we can let N — oo in (11.37), because the right-hand side of (11.37)
forms a monotonically increasing sequence that is bounded by its left-hand

side. Then we obtain -

(1,0 = D leal® (11.38)
n=-—oo
We further note that the series on the right-hand side of (11.38) necessarily
converges, since it is nondecreasing and bounded from above. Consequently,
we arrive at the second important property to be noted:
lim ¢, = 0. (11.39)
n—oo

Separating the real and imaginary parts in (11.39), we eventually find the
second point to be noted:



358 11 Fourier Series

#& Riemann—Lebesgue theorem:
If f(z) is square-integrable on the interval [0, A], then

A A
lim f(z)cos(nkz)de =0, lim f(z)sin(nkz)dx = 0.

Exercises

1. Derive the expressions (11.24) and (11.25) regarding the Dirichlet and
Fejér integrals, respectively.
Solution: From the definition of ¢, the partial sum Sy () yields
its integral form:

Y 1 A —inkt inkx
Sy (z) n-ZN{A/O f(t)e™m* dt} C etk
_ 1 A > —ink(t—zx)
A—x N
= %/ f(t+x) ( > e—i”’“t> dt. (11.40)

n=—N

The finite series of exponential terms reads

N 2N ;
. ) . . 1 — ¢t@N+1)kt
—inkt __ — 1Nkt wnkt _ _—iNkt
D T = TR ekt e e —
n=—N n=0
_cos(Nkt) — cos{(N + 1)kt}
B 1 — cos(kt)

Substituting this in (11.40) yields Dirichlet’s integral (11.24).
Moreover, its arithmetic mean reduces to Fejér’s integral (11.25)
as demonstrated by

1
on(z) = m{50+51+---+5N}
B 1 Amw 1 —cos{(N + 1)kt}
(N +1DA [I J(t+2) 1 — cos(kt) dt
1 A2 sin? N+l
=— t —2—dt. 11.41
(N+1A /_A/2 fe+a) sin® Lkt ( )
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In the last line of (11.41), the interval of the integration from
[—z, A — z] to [-A\/2,)/2] is replaced by taking account of the
periodicity of the integrand. o

2. Prove that oy (z) uniformly converges to f(x) by postulating the conti-
nuity of f(x).
Solution: Recall that the continuity of f(z) allows us to deter-
mine a J that satisfies

lz—2'|<d = |f(x)— f(a")] <e (11.42)

for an arbitrary small € to be positive. Further, owing to its con-
tinuity, the function f(z) is bounded as |f(x)| < M with an ap-
propriate constant M. We divide the range of integration given
in (11.28) as f’\)/\% = f__f/Q-&-ff&—i-f)‘/Q and use the inequality

(11.42) to obtain the middle term:

) 1)
l[;fu+m—fwnDNMﬁfs[ﬂu&+w—f@anwm

5
Se/ Dy(t)dt < eA(11.43)
-5

5 /2
|(/ e[ 0= ooy
/2 5
2

0 >‘ sin? Mkt
<</A + ){uu+mwwﬂ@}uv+nmn2mﬁ
5 )\/ dt
</A " J; >2M' (N + 1) sin?(kd/2)
<

(N + 1)sm (k6/2) (11.44)

From (11.28), (11.43), and (11.44), we obtain
2M
(N +1)sin?(ké/2)

Taking the limit N — oo and fixing the small quantity J, the
second term vanishes. We thus conclude that

Jim_Jon(z) = f@@)] = 0. & (11.45)

lon () — f(2)] < e+
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11.3 Uniform Convergence of Fourier series

11.3.1 Criterion for Uniform and Pointwise Convergence

We know that the Fourier series of f(z) converges in the mean to f(z) as far
as f(z) is square-integrable. However, the mean convergence of the Fourier
series provides no information as to its uniform convergence. In order for
the Fourier series to converge (uniformly or pointwise) to the original function
f(zx), several conditions regarding continuity and periodicity of f(z) have to
be satisfied. These are formally stated in the following two theorems:

& Uniform convergence of Fourier series:
The Fourier series of a continuous, piecewise smooth, and periodic func-
tion f(x) converges to f(z) absolutely and uniformly.

& Pointwise convergence of Fourier series:
The Fourier series of a piecewise smooth and periodic function f(x)
(continuous or discontinuous) converges to:

(i) f(x) at any point of continuity, and

f+0)+ f(x—-0)

(i) .

at any point of discontinuity.

Our main concern in this section is to prove these two theorems, and we follow
this by demonstrating several important features of Fourier series that occur
at discontinuous points of f(x).

Remark. Observe that the above theorems are consistent with the conclusion
of the Dirichlet theorem given in Sect. 11.1.2; the latter says that a Fourier
series representation becomes identical to f(x) provided that f(z) is periodic,
continuous, and further smooth (piecewise, at least).

11.3.2 Fejér theorem

The theorems given in the previous subsection clearly exhibit sufficient con-
ditions for the Fourier series to converge. It is pedagogical to compare them
with the Fejér theorem:

& Fejér theorem:
Any continuous and periodic function f(x) with a period A can be re-
produced by an infinite trigonometric series
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N

g inkx | _
1\}51100 f(z) — ZN Yn€ =0 for all z, (11.46)

with an appropriate choice of the set of expansion coefficients {7, }.

At first glance, Fejér’s theorem appears to ensure the uniform convergence of
the Fourier series. However, this is not the case at all; the sequence of the
optimal coefficients {7, } satisfying (11.46) cannot in general be replaced by
the Fourier coefficients {c, } defined by

_1/>\f( ) —inkxd
Cn_)\o xr)e X.

In fact, even when f(x) is continuous and periodic, its Fourier series may
diverge at discrete points, as is expressed by

N

f(l’)* Z Cneinkm

n=—N

lim

K =00 at some points z. (11.47)

Hence, Fejér’s theorem does not guarantee the uniform convergence of the
Fourier series representation. Equation (11.47) also suggests that the conti-
nuity and periodicity of f(z) are only necessary but not sufficient conditions,
for the uniform convergence of its Fourier series to the original function f(z).

11.3.3 Proof of Uniform Convergence

We are now in a position to prove the criterion for uniform convergence of
the Fourier series Y - ¢,e™* to f(z). The proof that is presented below
is based on the mean convergence property of Fourier series. Recall that the
mean convergence of Fourier series is expressed by

2

/ fl@)= > cpe™| dr=0. (11.48)
In general, the relation
b| N 2
1\}51100 ’ nz:%un(x) dx =0

means

N
e (0] -

n=0
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if and only if the infinite series > °  up(x) converges uniformly to a certain
function of = within the range of integration [a, b]. Therefore, in order to obtain
the desired equality

oo

f(.’,E): Z Cneinkx
n=—oo
for any = € [0,)], we must seck the condition that the infinite series
S cne™kT converges uniformly to some function of z [not necessarily

to f(x)]. Thus, we rewrite the Fourier coefficient ¢,, as

I inka
ecn=~ [ flz)e """ dx
AJo
1

A
_ —inkz] 1 / —inkx
T ink\ [f(a:)e ]o + ink)\/o f(x)e dx

/

o1, ok c
11 —inka g, _ “n 11.4
nk A /0 Flaye™de =20, (11.49)

where ¢/, is the Fourier coefficient of the derivative f’(z). Here f(z) is assumed
to be periodic, e.g., f(0) = f(\) and kX = 27. We further assume that f(x) is
continuous and smooth (piecewise, at least) on the interval [0, A]. Then, f’(x)
is continuous (or piecewise continuous) to yield Parseval’s identity:

A o
[ ir@Pde= 3 je P =a,
0 n=—oo
where A is a constant. Observe that
= — | — |c,|
Do odeal= D 2E = D0 (11.50)

From the Schwartz inequality, it follows that

e ‘C/ ‘ oo 1 5 e 1 o0 ,
nl __ / /
Z nk n;m n2k2 len|? < Z n2k2 Z n]

n=—oo n=—oo n=—oo

—- (11.51)

n=—oo

It follows that Y > (1/n?) is convergent (See the remark below). Hence,

n=1
from (11.50) and (11.51), we see that > >~ _ |c,| converges. This implies
that 2 ¢,e™*® converges uniformly to a certain function on [0, \] since

e, e | < |c,| for all n on [0, \]. (See Sect. 3.3.1 for the criteria for uniform
convergence.) This completes our proof.
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Remark. That the series Y -, (1/n?) is convergent is verified as follows: set

Asri1_q to be a partial sum consisting of the first 2871 — 1 terms. Then we
have

1 1 1 1
Agkri_; =1+ 2—2—‘,—3—2 + 472++ﬁ 4+ .-

*[(2%2*“'*(2’“111)2}

1 1
<1+§x2+4—2x4+-~-+(2k)2

ForNE 1 - (1/2)k
() -

This means that Agr+1_¢ for any k is bounded above. Furthermore, the se-
quence (A4,,) is monotonically increasing. Hence, (A,,) converges in the limit
of m — oo, which completes the proof.

x 2F

11.3.4 Pointwise Convergence at Discontinuous Points

This subsection gives an account of the second criterion in Sect. 11.3.1, which
is restated below.

& Pointwise convergence at discontinuities:
When a function f(z) is piecewise continuous and piecewise smooth, its

Fourier series converges pointwise to { f(z+0) — f(z —0)}/2 at a point of
discontinuity.

This theorem can be proven in the following manner. It readily follows from
(11.24) that the partial sum of the Fourier series Sy (z) is expressed by

1 e G(N+3 )kt _ —i( N+ )kt
Sn(@) = 5 /_ e d.
We rewrite this as
1 A—z eizkt )
Sn(z) = ) f(x—i—t)m-e”vktdt
A—x —idkt
_ % [z fz+ t)m e~ iNEt gy
1 A—z eiskt )
= /. {f@+t)+ flx—1)} 0 (k) ekt dt.
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Here we have set t — —t in the second integral in the first line. Further,

I , _ A=z ilkt iNkt
SN(ac) / g(t)esztdt + f(m+0)+f(m O) / € € dt,

2N/, 2i\ —o  sin (1kt)
(11.52)
where we have introduced the notation
elakt
gt) ={fle+t) = fla+0)+ fla—t) = f(z = 0)} — -
sin (§kt)

The second term in (11.52) can be simplified via the relation

1 [T gighktgiNkt
/ at =1,

ixJ_, sin (3kt)
(See Exercise 3 in Sect. 11.3 for its derivation.) Substituting this into (11.52),
we get

Sn(x) (11.53)

Y iNkt flz+0)+ f(z—0)
=2 /_ ) g(t)e' ™ dt + 5 .
If the integration term in (11.53) vanishes with N — oo, we will success-
fully obtain the desired result. In fact, when g(t) is piecewise continuous in the
interval [—x, A — z], the integral in (11.53) vanishes owing to the Riemann—
Lebesgue theorem (see Sect. 11.2.5). The remaining task is, therefore, to prove
the piecewise continuity of g(¢) on [—x, A—z], which is actually verified through

the following discussion.
it/2

When ¢t # 0, f(t) is piecewise continuous and sin(¢/2) and e are
bounded; thus g(t) is surely piecewise continuous. When ¢ = 0, we have
oy = (1D @0 S0 @0 L
t t 2sin (ikt)
SO
lim g(t) = {lim ftre) - J@t0) | S@=D _f(x_o)} -2, (11.54)
t—0 t—0 t t—0 t

The first and second terms in (11.54) are the derivatives of f(x) on the right
and left, respectively. Since f(t) is assumed to be piecewise smooth, f’(¢) is
piecewise continuous; thus both terms in (11.54) exist. This indicates that
the limit lim; .o g(¢) exists, so g(t) is piecewise continuous within the interval
[—z, A — x].

Consequently, we can conclude from (11.53) that

flx+0)+ f(x —0)
2 b
which implies the pointwise convergence of the Fourier series to [f(z + 0) +

f(z = 0)]/2.

i, Sv(e) =
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11.3.5 Gibbs Phenomenon

If a function f(z) has discontinuities in the defining region, its Fourier series
does not reproduce the behavior of f(x) at points of discontinuity. In other
words, the partial sums of a Fourier series cannot approach f(z) uniformly
in the vicinity of a point of discontinuity. Furthermore, close to discontinu-
ous points, the Fourier series inevitably overshoots the value of the original
function to be expanded. The size of the overshoot is proportional to the
magnitude of the discontinuity. This overshoot is known, which as the Gibbs
phenomenon is nicely illustrated with the Fourier series for the step function

+1 for 0< < %7
f(x) =

A
—1 for §<£C</\,

which is a periodic square wave with period A. The complex Fourier coefficient

¢, reads
1 A2 PO
Cp = — / e—znk:cdx o / e—lnkzdx
A\ Jo A2

0 (n = even)

inaey 2
— . 1 _ e*Z’nTK‘ —
2inm ( ) i (n = odd).

Then we have

2 inkx __ 2 —inkx 2 inkx
f(@) Z imre N Z fimre + imre

n=-,—3,—1,1,3, n=1,3,
sin(2n — 1)k
= — . 11.55
Z 2n —1 ( )

Figure 11.7 shows f(x) for 0 < z < X for the sum of four, six, and ten
terms of the series. Three features deserve attention.

(i) There is a steady increase in the accuracy of the representation as the
number of included terms is increased.

(ii) All the curves pass through the midpoint of f(z) = 0 at the points of
discontinuity z = nA/2 (n = 0,£1,4+2,---).

(iii) In the vicinity of z = nA/2, there is an overshoot that persists and shows
no sign of diminishing.

As more and more terms are taken, the small oscillations along each hori-
zontal portion get smaller and smaller and, except for the two outer terms of
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Fig. 11.7. Gibbs phenomena for the Fourier series of a step function. The partial
sums of one, five, and fifty terms the right-hand side of (11.55) are given

each portion closes to the discontinuities, eventually disappear. Even in the
limit of an infinite number of terms, there is still a small overshoot. This over-
shoot is nothing but what we call the Gibbs phenomenon, which results in
the fact that the Fourier series cannot have uniform convergence at a point of
discontinuity.

11.3.6 Overshoot at a Discontinuous Point

Owing to Gibbs phenomena, a Fourier series representation is highly unreliable
in the vicinity of a discontinuity. We now consider the resulting degree of error
when we represent a function f(z) by a Fourier series having a discontinuity.

The maximum overshoot can be evaluated analytically through the follow-
ing procedure. Let us consider a finite sum of the Fourier series in the complex
form

N
SN(.’E) _ Z Cneinkm’
n=—N
which yields

f+a)Ky(t)dt, Kn(t)=

1 e sin [(NV + 3)kt]
A/ﬂ —Sin(%ki) . (11.56)

We consider the behavior of Sy () in the vicinity of a discontinuity at x = xo.
We denote the jump of f(z) at this discontinuity by Af and the jump of its
finite Fourier sum by ASy:
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Af = f(wo+e) = f(wo—¢€), ASn = Sn(zo+¢)— Sn(zo — ),

where ¢ is infinitesimal. We then have

A A

—xo—€ —xo+e

A—zg—e A—mzo+e
ASy = l/ ft+zo+e)Kn(t)dt — l/ [t +zo—e)Kn(t)dl.

Owing to the periodicity of the integrand f(t+x) Ky (t), we replace the range
of integration as follows:

1 A—e Ate
ASN:X/ f(t—f—xo—l-e)KN(t)dt—X/ f(t+ 20 — e)Kn(t)dt.

—€

Hence, we have

€ A—e
ASN:% (/ +/ )f(t+$0+€)KN(t)dt
1 A—e Ate
-3 (/ /)\ ) (t+zo —e)Kn(t)dt

/_[f(t—i—a:o—i-s) F(t+ 20 — )] Kn(t)dt

> =

1 A—e
+X/ [f(t+ 20 +€) — f(t + 20— )] Kn(t)dt. (11.57)

The integrand of (11.57) gives zero for all values of ¢ except near ¢t = 0. Close
to t = 0, the integrand has a somewhat large value because of (i) the jump of
f(t+xzp) at t = 0 and (ii) the significant contribution of Ky (¢) in the vicinity
of t = 0. Hence, we can confine the integration to the small interval (-4, +0)
for which the difference in the square brackets in (11.57) is simply Af. It now
follows that

Af sin { (N + 3) kt} AAf [0 sin{(N + 1) kt}
/ T dt ~ / dt
sin 5kt A kt
(11.58)
where the sine in the dominator was approximated by its argument because
of the smallness of t.

The value of ASy depends crucially on the interval §, since the integrand
in (11.58) rapidly alternates its sign as t increases. The reader may find the
plot of the integrand in Fig. 11.8, where it is shown clearly that the major
contribution to the integral comes from the interval [0,\/(2N + 1)], where
A/(2N +1) is the first zero of the integrand. Hence, if the upper limit is larger
than A\/(2N + 1), the result of the integral will clearly decrease, because in
each interval of length A, the area below the horizontal axis is larger than that
above. Therefore, if we are interested in the maximum overshoot of the finite
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Fig. 11.8. The integrand of (11.58)

sum ASy, we must set the upper limit equal to A/(2N + 1). Tt follows that
the maximum overshoot is

(ASN)max =~ dt

4AFf /A/@NH) sin(N + 1)kt
A Jo kt

4Af(N+1)/’Tsinx d:c1 _ 2Af/7T sinxdx

1

L.17T9AF.

We thus conclude that the finite (large-NN) sum approximation of the discon-
tinuous function overshoots the function itself at a discontinuity by about 18%
in this case. This means that the Fourier series tends to overshoot the posi-
tive corner by some 18% and to undershoot the negative corner by the same
amount. The inclusion of more terms (increasing r) does nothing to remove
this overshoot but merely moves it closer to the point of discontinuity.

Exercises

1. Let f(z) be absolutely integrable and form the Fourier series of f(z) in
the interval (—m, 7). Show that the convergence of its Fourier series at a
specified point x within the interval depends only on the behavior of f
in the immediate vicinity of this point. (This result is referred to as the
localization theorem.)

Solution: We use the integral formula for the partial sums
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sin mu
———du
/ f@ 2 sin(u/2)
sin mu
f du + Il + 127
/ sin(u/2)

where we have set m = n + (1/2). Here ¢ is an arbitrarily small
positive number, and I, I, are the integrals over the intervals
[0, 7] and [—m, —0], respectively. On these intervals, the function
1/[2sin(u/2)] is continuous (since |u| > §) and, therefore, the func-

tion o+ )
2sin(u/2)

is absolutely integrable. It then follows from the Riemann—Lebesgue
theorem that the integral

92}
3

8
~
| |

p(u) =

= l/ o(u) sin mudu
T™Js

approaches zero as m — oo. The same is true of I5. Thus, whether
or not the partial sums of the Fourier series have a limit at the
point z depends on the behavior of the integral

sinmu
/f$+ 251n(u/2)

as m — 0o, which involves only the values of the function f(z) in
the neighborhood [z — §, z + 4] of the point x. This completes the
proof. o

2. Let f(x) = —log|2sin(x/2)|, which is even and becomes infinite at x =
okr (k= 0,+1,£2,---).

(i) Show that f(x) is integrable.
(ii) Calculate the Fourier series of f(x).

(iii) Derive the identity: log2 =1 — (1/2) + (1/3) — (1/4) +

Solution:

(i) The given f(z) equals zero at x = 7/3 and is 2m-periodic.
Hence, to prove the integrability of f(z), it suffices to show
that it is integrable on the interval [0,7/3]. Clearly we have

/3 x € /3 x cos(z/2)
- 1 ’2' f‘d — elog (2sin = / TCORAL/2)
/E 0g |2 sin 5 T =¢c og( sin 2) + : 2sin(z/2)
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where we have dropped the absolute value sign, since 2sin(x/2) >
1for 0 <z < 7/3. As e — 0, the quantity log[2sin(¢/2)] ap-
proaches zero, which is verified by using I’'Hopital’s rule (see
Sect. 1.4.1), whereas the last integral converges since the in-
tegrand is bounded. (Recall that lim, .o z/[2sin(z/2)] = 1.)
Thus, — foﬂ/S log |25in%‘ dx exists, i.e., f(z) is integrable on
the interval [0, 7/3].

(i) Since f(z) is even, we have b, =0 (n =1,2,---) and

2 T
an:**/ log (2sin£) cosnzdr (n=0,1,2,---).
T 0 2

For n # 0, integrating by parts and then applying I’'Hopital’s
rule, we get

1 [Tsi 2
/ sin na cos(z/ )dm
0

nw sin(z/2) (n=12),

ap =

and then use the identity 2 sinnx cos(x/2) = sinn+ (1/2)]x +
sin[n — (1/2)]z to obtain

1 [T sinn+ (1/2)] - 1 [Tsin[n — (1/2)]xdx

- 0 2sin(x/2) nw Jo 2sin(x/2)

1
= (n=0,1,2,---).
- (0 )

For n = 0, we have

2 [ 2 [T
aoz—f/ log (28in£) da:z—f/ (logQ—HogsinE) dx

= 7log?2 —|—/ log (sin f) dx.
0 2

The last integral, denoted by I, reads

/2 /2 t t
I= 2/ log(sint)dt = 2/ log (2 sin — cos ) dt

/2 t w/2 ¢
=mlog2+ 2/ log (sin > dt + 2/ log (COS ) dt.
0 2 0 2

The substitution ¢t = 7w — u gives foﬂ/Q log[cos(t/2)]dt =
f:/Q log[sin(u/2)]du, which implies that I = wlog2 + 21, i.e.,
I = —mlog 2. Consequently, ag = 0.
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(iii) Since the function f(z) is obviously differentiable for « # 2k
(k=0,£1,4£2,---), it follows that
cos2x  cos3w
2 + 3
for x # 2km (k =0,£1,£2,---). Setting = 7 in (11.59), we
obtain the desired result. &

+ (11.59)

—log‘2sing‘ =cosx +

3. Show that

A= Ji(N+5)kt
/ g dt =i (11.60)
_p sin (ikt)

Solution:
Recall an alternative form of Sy (x) given in (11.40):

1 A—x N )
Sn(z) = X/ ft+2) ( Z e’"kt> dt. (11.61)
n=—N

—x

Setting f(t) = 1 into (11.61) and (11.52) and comparing them, we

have
1 (A% pidktgiNkt 1 [ N .
0+_—/ S S—— —/ ekt ) qt
A J s sm(ikzt) A, ~

n=

1 N A—z ) 1 N
=1 2 / eTdt) =5 D Mo =1. &
n=—N - n=—N

11.4 Applications in Physics and Engineering

11.4.1 Temperature Variation of the Ground

The most important applications of Fourier series expansions in the physi-
cal sciences are in solving partial differential equations that describe a
wide variety of physical phenomena. In this section, two typical examples of
such applications are presented, while more rigorous discussions on partial
differential equations are given in Chap. 17.

First, we consider the temperature variation of the ground exposed to
sunlight. The temperature at a depth of x meters at time ¢, denoted by u(z, t),
is known to be determined by the diffusion equation

ou 0%
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Here, the proportionality constant & is called the thermal conductivity and
its magnitude on the ground is roughly estimated at k = 3.0 x 107 m?/s. We
will see below that the Fourier series expansion provides a means of solving
equation (11.62) and clarifying the physical interpretation of its solution.

Suppose that the temperature of the land surface, u(xz = 0,t), changes
periodically with a period T'; the period T may range from a day to a year.
It is then reasonable to express u(z,t) by the Fourier series

= - 2w
t) = » mwt =22,
u(zx,t) n;ooc (z)e <w T>
Substitute this into (11.62) to obtain
. _dPey
inwey, () = Ko

which implies

1+7 [nw
exp 7@ ?x n>0

1—i [|n|w
exp _\/5 Tl‘ n < 0.

Here we have chosen the solutions that behave as |¢,(z)| — 0 in the limit of
& — o0. In order to obtain the zeroth term co(x), we note that

en(x) o

deo(x)
de2
and thus
Co(l‘) = Ay + Box.
Owing to the condition that lim, . |co(x)| = 0, we see that By = 0 and

Ay = const. As a result, we obtain

u(x,t) = Ag + 2 Z Ape” % cos (nwt — an® + ¢, (11.63)

n=1
nw
Ay = -
2K

and the constants A, and ¢, are determined by the ¢-dependence of the
surface temperature u(x = 0,1).

Note the presence of the parameter v, in the general solution (11.63).
It indicates that a wave component with the period T'/n has the following

where
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features: (i) decay of the wave amplitude by e~ *"* with an increase in z, and
(ii) a phase shift by «,x relative to the surface temperature u(x = 0,1).

Let us quantify the actual value of «,,. For this, we consider the case of
T = 1 day (i.e., 60 x 60 x 24s) and assume monochromatic variation of the
surface temperature given by

u(0,t) = 15+ 5 cos (?t) °C.

Comparing this with (11.63) with « = 0, we get Ay = 15, 47 = 5/2, and
A, =0 for n > 2. Then, since

B 2 x 3.14 s
M7 2% (3.0 x 1076) x (60 x 60 x 24)

we have )
u(z,t) = 15 4+ 5e 3% cos (;t - 3.595) .

A three-dimensional plot of u(z,t) in the 2-t plane is shown in Fig. 11.9. We
observe that at depths greater than 1m, the temperature variation is almost
in antiphase to that at the surface (x = 0) and the amplitude decreases
considerably.

11.4.2 String Vibration Under Impact

The second example is the vibration of an elastic string subject to an impact
force in a local region. Consider the case of a piano wire under an impact force
applied by a hammer. Suppose that an impulse I is applied at the position
x = a of a suspended string with length £ and mass density p. The vibrational
amplitude of the string, denoted by u(x,t), is governed by the wave equation

Pu 0%

— =" =—. 11.64
oz~ ¢ ar2 ( )

The string is initially assumed to be stationary, i.e.,
u(z,t =0)=0. (11.65)

The initial velocity of the line element at z is denoted by v(z). Then, the law
of the conservation of momentum states that

/£ pv(x)dx =1, (11.66)
0

where
v(x) =V 0(z —a), (11.67)
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Temperauture variation [°C]

Date t

Fig. 11.9. Temperature variation u(z,t) of the underground below = meters on ¢
days

with an appropriate constant V. From (11.66) and (11.67), we have V = I/p.
Furthermore, since

ou
v(z) = Fn )
we have 5 s
U
— = =(z —a). 11.68
i), = 0 (11.68)
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Under the two initial conditions (11.65) and (11.68), the general solution of
(11.64) is given by

u(w,t) =Y Ansink,zsin (wnt + ¢n) , (11.69)
n=1
where o
kn = 77 Wnp = Ckn

The constants A, and ¢, in (11.69) are again determined by the initial
conditions. First, imposing the condition u(z,t = 0) = 0 into (11.69) implies

Apsing, =0 for all n, (11.70)

owing to the linear independence of {sink,x}. Next, it follows from (11.69)
that
ou

at

= I
= E Apwn cos ¢, sinkpz = —6(z — a).
t=0 n=1 p

Mutiplying both sides by sin k,,x and then integrating yields
¢ I
A, Wy, COS Oy, / sin? k,,xdr = ; sin k,,a for all m. (11.71)
0
From (11.70) and (11.71), we finally obtain

21
¢, =0 and A, = plTSin kna for all n. (11.72)

The second expression in (11.72) implies that the position x = a that sat-
isfies sin k,a = 0 yields A,, = 0; i.e., the nth vibration mode is not excited by
the impulsive force applied at x = a that satisfies sin k,a = 0. In contrast, if
we apply an impulsive force at x = a satisfying | sin k,,a| = 1, the correspond-
ing nth mode will have a large vibrational amplitude, as is actually the case
inside a piano.
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Fourier Transformation

Abstract Fourier transformation is an effective tool for confirming the dual na-
ture of a complex-valued function (as well as a real-valued one). Furthermore, the
transformation enables us to measure certain correlations of a function with itself
or with other functions; thus a Fourier transform can be applied to probability the-
ory, signal analysis, etc. In this chapter we also provide the essence of a discrete
Fourier transform (Sect. 12.3), which refers to a Fourier transform applied to a dis-
crete complex-valued series. A discrete Fourier transform is commonly used in the
numerical computation of Fourier transforms because of its computational efficiency.

12.1 Fourier Transform

12.1.1 Derivation of Fourier Transform

The properties of Fourier series that we have already developed are adequate
for handling the expansion of any periodic function. Nevertheless, there are
many problems in physics and engineering that do not involve periodic func-
tions, so it is important to generalize Fourier series to include nonperiodic
functions. A nonperiodic function can be considered as a limit of a given
periodic function whose period becomes infinite.
Let us write Fourier series representing a periodic function f(z) in complex
form: oo
fl@)y= > e, (12.1)
n=—oo

with the definition k& = 2nm /), in which

A
1 [2 ik
= 7/ f(x)e*dy.
Aoy

We then introduce the quantity

Ak = Q%An. (12.2)
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From the definition (12.2), the adjacent values of k are obtained by setting
An = 1, which corresponds to (A\/2m)Ak = 1. Therefore, multiplying each
side of (12.1) by (A\/27)Ak yields

(oo}

flz) = Z ex(k)e™ Ak, (12.3)

n=—oo
where

A
1 2 "
C)\(k) = %Cn = 27/ f(x)e_lkmdx'
iy ™ 7%

In the limit as A — oo, the ks are distributed continuously instead of discretely,
ie., Ak — dk. Thus, the sum in (12.3) becomes exactly the definition of an
integral. As a result, we arrive at the conclusion

c(k) = AILH;O ex(k) = % /_00 f(m)e_““”dx (12.4)
and -
f(x) :/_ c(k)e** dk. (12.5)

Further, by defining F'(k) = v2mc(k), equations (12.4) and (12.5) take the
symmetrical form given below, known as the Fourier transform or Fourier
integral representation of f(x).

& Fourier transform:
The Fourier transform of f(z) is defined by

Fk) = \/LQ_F [ " f@)emiteds, (12.6)

# Inverse Fourier transform:
The inverse Fourier transform of F(k) given above is defined by

1 > 1kx
f(z) = E/_w F(k)e™**dk, (12.7)

We often write the expressions (12.6) and (12.7) in simpler form:
F(k)=F[f(x)] and f(z)=7F""[F(K)].

Observe that F'(k) as well as f(x) are, in general, complex-valued functions
of the real variables k and z, respectively. Yet, if f(z) is real, then

F(—k) = F*(k),

which gives two immediate corollaries (proofs are left to the reader):
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& Fourier integral theorem:
1. If f(x) is real and even, F(k) is real.

2. If f(z) is real and odd, F(k) is purely imaginary.

12.1.2 Fourier Integral Theorem

Our derivations of the Fourier transform and its inverse transform, (12.7) and
(12.6), have been ambiguous from a mathematical viewpoint. For developing
exact derivations and clarifying the conditions for the infinite integrals in
(12.7) and (12.6) to converge, the following theorem is of crucial importance:

& Fourier integral theorem:
If f(x) is piecewise smooth and absolutely integrable, then

I N y = @+ 0+ f@—0)
;/0 [/_OO f(t) cosu(z —t)dt| d . (12.8)

2

Remark. The theorem is valid for each fixed x, so x can be considered a
constant insofar as the integrations are concerned.

Before starting the proof of the theorem, we note that (12.8) reduces to the

form of (12.7) and (12.6) when z is a continuous point of f(x). To see this,
we make use of the identity

3 1 [
/ cosu(x — t)du = f/ @t gy, (12.9)
0 2 )¢
Since (12.8) reads

f(z) = lim f/ f dt/ cosu(r — u)du, (12.10)

we substitute (12.9) and (12.10) to obtain

_ 1 > uxT > —itu _ 1 > Tux
fz) = g/_we du/_OO ft)e ""dt = 277/ F(u)e™*du,

1 [~ ,
= —/ F(t)e "udt.
27 J_ o

These results are clearly equivalent to the forms of (12.7) and (12.6).

where
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12.1.3 Proof of the Fourier Integral Theorem

The proof of the Fourier integral theorem is based on the following two
lemmas:

& Lemma 1: If f(z) is piecewise smooth for all z € R, then

b .
lim / £@) % gy = T (04) for b > 0.
£—o0 0 x 2

® Lemma 2: If f(z,t) is a continuous function of ¢ for a < t < b and
if lim,_, oo foc f(z,t)dz exists and converges uniformly to a certain function
g(t) in the interval, then g(t) is continuous in the interval and

/abg(t)dt - /ab UOOO f(x,t)dx} dt = /OOO Vb f(x,t)dt] dz.

Note that f(0+) in Lemma 1 denotes the limiting value of f(z) as z tends
to zero through positive values. The proof of Lemma 1 is left to Exercise 2.
Lemma 2 follows from the fact that uniform convergence allows us to inter-
change the order of limiting and integration procedures (see Chapter 3 for
details).

We are now ready to prove the Fourier integral theorem expressed by (12.8).

Proof (of the Fourier integral theorem): Let f(z) be piecewise
smooth and absolutely integrable. Consider the integral

/ ") cosula — 1)t

Since | cosu(z —t)| < 1, the convergence of this integral is ensured by
our hypothesis that f f(t)|dt converges, and since this conclusion is
independent of u and x, the convergence is uniform for all u. Therefore,
in view of Lemma 2, we can interchange the order of integration in

b [e%S)
1= —t)dt| d
/0 {/_oof(t)cosu(x t) t] u
to obtain

_ [~ b [ sinb(x — 1)
I:[m Vo f(t)cosu(x—t)du] dt—[w A0 s

We now decompose this into four integrals:

L

@ =Y rpar,  (1211)

r—t
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where M is taken to be so large that the first and the last integrals
in (12.11) are less in absolute value than some prescribed € > 0. By
changing variables, taking u = t — x, we can write the third integral

in (12.11) as
M-z _:
b
/ - uf((E + u)du.
0

u

In view of Lemma 1, this tends to 7 f(x 4+ 0)/2 as b — oo. Similarly,
the second integral tends to mf(xz — 0)/2. Therefore, by taking M
sufficiently large, we obtain

m[f(x+0)+ f(z = 0)]
2

lim I < + 2¢,
b—oo

or equivalently,

/0°° UZ F(t) cosu(a — t)dt| du — = St 0) + 7w =0 .,

2

This completes the proof of the theorem. &

12.1.4 Inverse Relations of the Half-width

In practice, we often encounter functions f(x) having a sharp peak at a specific
point, say x = 0. The width of the peak of such a function is possibly correlated
with the width of the peak that is exhibited by the resulting Fourier transform
F(k) = F[f(x)]. A typical example of this phenomenon is seen by considering
the Fourier transform of a Gaussian function f(x) = aeb" with a,b>0,ie.,

F(k) =

00 —k2/(4b 00
C; / o—ba g—ika g, ae”h"/(40) o~ blatik/(20))* .
T J—c0o

Vr Vor Jes

We substitute y = x + ik/(2b) to evaluate the integral as

/Oo o blatik/(2D)] g /Oo e dy = %

B AC)
F(k) \/%e ,

which is also Gaussian. It is noteworthy that the width of f(x), which is
proportional to 1/v/b, is in inverse relation to the width of F(k), which is pro-
portional to v/b. Therefore, increasing the width of f(z) results in a decrease
in the width of F(k). In the limit of infinite width (a constant function), we
get infinite sharpness (the delta function). In fact, denoting the widths as Ax
and Ak, we have Az Ak ~ 1.

and we get
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# Inverse relation of the half-width:

When f(z) consists of a single peak whose width is characterized by Az,
its Fourier transform F (k) is also a single-peak function with a width Ak,
which yields AxAk ~ 1.

For the second example, we evaluate the Fourier transform of a box function
defined by
b, if |z| < a,

f(x):{O,if |z| > a.

From the definition, we have

1 o ) b @ 2ab ([ sinka
F _ —ikx _ —ikx _ )
(k) o /_OO f(z)e dx W _ae dx o < a )

Observe again that the width of f(z), Az = 2a, is in inverse relation to the
width of F(k), which is roughly the distance between its first two roots, k4
and k_, on either side of k = 0: Ak = k; —k_ = 27 /a. In addition, if a — oo,
the function f(z) becomes a constant function over the entire real line, and
we get

20 sin ka 20
F(k) = lim = wo(k).
(k) = —5= Jim — 5 "0(k)
Otherwise, if b — oo and @ — 0 in such a way that 2ab [the area under the
graph of f(z)] remains fixed at unity, then f(x) approaches the delta function
and F'(k) becomes

2ab sin ka 1
F(k) = lim lim = .
( ) a—0b—oo /2 ka V2T

12.1.5 Parseval Identity for Fourier Transforms

If F(k) and G(k) are Fourier transforms of f(z) and g(z), respectively, we
have

/ Z F()g" (@) da

_ /_O; {1%/: F(k)ei’”dk} x {\/12? /_O:O G*(k’)eik/ﬂcczk’} d

:/ dk:/ dk’F(k)G*(k){;/ ei(kk/)wdx}
— 00 —0o0 T J—c0

/_ () / T Ak GH (RS — k)

— 00

oo

% F(R)G* (k) dk, (12.12)

— 00
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or similarly,
1 o0

/_ " fw)g(@) do F(k)G(—k) dk. (12.13)

In particular, if we set g(z) = f(x) in (12.12), we have

:% .

/Oo |f (z)|2dx = ;T/_: |F(k)|?dE. (12.14)

— 00

Here |F(k)|? is referred to as the power spectrum of the function f(x).
Equation (12.14), or the more general (12.13), is known as the Parseval
identity for Fourier integrals.

Remark. A sufficient condition for interchanging the order of integration in
(12.12) is the absolute convergence of the integrals: [* F(k)e™***dk and

[ G e =K.

Parseval’s identity is very useful for understanding the physical interpretation
of the transform function F'(k) when the physical significance of f(z) is known,
as illustrated in the following example:

Ezxamples The displacement of a damped harmonic oscillator as a function
of time is given by

f(t):{o for t <0,

e /T sinwgt for t > 0.

The Fourier transform of this function is given by

0 e
F(w) = / 0 x e ™idt —|—/ e~ t/7 sinwgte “tdt
—00 0
1 > —i(w—wo)t—t/T —i(wtwo)t—t/T
=0+ = [e 0 —e 0 } dt
21 J

1 1 1

2 \wHw—i/T w—wy—i/T)’
The physical interpretation of | F'(w)|? is the energy content per unit frequency
interval (i.e., the energy spectrum) while |f(¢)|? is proportional to the sum of
the kinetic and potential energies of the oscillator. Hence, Parseval’s identity,

expressed by
o0 1 oo
| ke = o [P,

—0o0
shows the equivalence of these two alternative specifications for the total en-
ergy to within a constant.
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12.1.6 Fourier Transforms in Higher Dimensions

The concept of the Fourier transform can be extended naturally to more than
one dimension. For example, in three dimensions we can define the Fourier
transform of f(:v,y7z) as

F(ke, ky, k-) 2 3/2 ///f x,y, 2)e et em ke Tk qudydy  (12.15)
)
and its inverse as

f(x,y,2) = 3/2 /// (kp, kyk,)eFemethvveth=2qp dk,dk,. (12.16)

Denoting the vector with components k,, ky, k. by k and that with compo-
nents x, y, z by r, we can write the Fourier transform pair (12.15), (12.16) as
follows:

# Fourier transforms in three dimensions:

1 —zk»’l"
F( 271')3/2 /f d""?

1 zk’!‘
f(r) = @i / dk.

It is pedagogical to evaluate the Fourier transform of a function f(r) under the
condition that the system possesses spherical symmetry, i.e., f(r) = f(r). We
employ spherical coordinates in which the vector k of the Fourier transform
lies along the polar axis (6 = 0). We then have

dr = r?sinfdrdfdd¢ and k-r = krcosb,

where k = |k|. The Fourier transform is then given by

1 711{5 r
F(k) 27r) oNaZ / flr dr
1 d f ) Trde ino —ikr cos 6
W ; rrt f(r ; sin fe .
The integral over # may be straightforwardly evaluated by noting that
A
do

—ikr cos 6 —ikr cos 0

= tkrsinf e
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Therefore,

1 00 ) e—ikr cos 67 9=7
F = —_—— -
= o |, 0 [

e ink
= 7(27:)1/2 /0 2r2 f(r) (S krr) dr.

Remark. A similar result may be obtained for two-dimensional Fourier
transforms in which f(r) = f(p), i.e., f(r) is independent of the azimuthal
angle ¢. In this case, we find

P = [ pf (o) (holds

where Jy(z) is the zeroth order Bessel function.

Exercises

1. Show that if f(x) is piecewise continuous over (a,b), then

b
glim / f(z)sin&xdz = 0.

Solution: If f has a continuous derivative, this is easily proved;
we integrate by parts to obtain

sin §$:|
3

which tends to zero as & — oo since the integral on the right-hand
side is bounded. If f is not integrable, let p be a continuously

differentiable function such that f; |f(z) — p(z)|dz < . Then

b

b b
/a f(x)coséxdr = [f(x) - %/a f/(x) sin Exda,

a

b b
[ 1#6@) = pla)) cosada| < [ 17(2) ~ pla)] | cosgaldo

b
< [ 17@) - pla)lde <<

independently of £, and as the preceding discussion gave us
f:p(x) cos Exdx — 0, it follows that fj f(x)cos&xdr — 0 as well.
The proof that f;p(x) sinéxdx — 0 is similar. &
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* sinx

2. Show that / dx = g

0 X

Solution: If we substitute A = 27, x = 7 into (11.60) and note
that the integrand is an odd function, it follows that

”sin(gnjlu) by
/0 7 du = . (12.17)

Applying the result of Exercise 1 noted above to the function
[(2/u) — 1/ sin(u/2)] (which is bounded in 0 < u < 7), we have

lim sin(2n+1u>{2 1}du0. (12.18)
0

n—00 2 u sin(u/2)

Summing (12.17) and (12.18), we obtain

. T 2sin 2”2—+1u
lim —= —du=m.
n—oo [ u

Changing variables and letting t = (2n + 1)u/2, we set

(2n+1)m/2 sin t -
lim —dt=—.
We already know that fOM (sint)/t dt tends to a limit as M — oo
which completes our proof. &

3. Show that

A—o0

b .
lim / f(2) SmwAm do = g F(0+) forb >0
0

whenever f is piecewise smooth.

Solution: Observe that

b . b . b
/Of(x)smAzdx/O f(O+)SlnAxdx+/O Msin/lxdx

x T

Ab b
:f(0+)/0 Smudu—l—/o Msin/lxd:c.

u

From the result of Exercise 1, the last integral tends to zero as
A — o0, since the integrand is piecewise smooth in the interval
0 < z < b. It also remains bounded in this interval since, as =
tends to zero, [f(x) — f(0+)]/z tends to f'(0+). From Exercise 2,
the other integral tends to the desired value. &
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12.2 Convolution and Correlations

12.2.1 Convolution Theorem

In the application of the Fourier transform, we often encounter a product
such as F(k)G(k), where each of two functions is the Fourier transform of a
function f(z) and g(zx), respectively. Here, we are interested in finding out
how the inverse Fourier transform of the product denoted by

FHF(k)G(R)],
is related to the individual inverse function
FHUEMR)] = f(z) and FHG(K)] = g().

To begin with, we introduce a key concept called convolution and then state
an important theorem that plays a central role in the discussion of the matter.

& Convolution:
The convolution of the function f(z) and g(z), denoted by f * g, is
defined by

1 o0
frxg= ot /_OO fw)g(x — u)du. (12.19)

The convolution obeys the commutative, associative, and distributive
laws of algebra, i.e., if we have function fy, fs, f3, then

Jix fa=faxf1 (Commutative).
fi#(foxf3)=(f1%f2)* f3 (Associative). (12.20)
Ji1x (fa+ f3) = (f1 * f2) + (f1 * f3) (Distributive).

We are now ready to prove the following important theorem regarding the
product F(k)G(k) of two Fourier transforms.

& Convolution theorem:
If F(k) and G(k) are Fourier transforms of f(z) and g(x), respectively,
then
F(k)G(k) = F[f = g]. (12.21)
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Proof Tt follows from the definition of the Fourier transform that

FO) = = [ fa)e e,

G(k) = \/% /_OO g(x)e *dg,

which yields
1 R e : ,
F(k)G(k) = 2—/ / f(x)g(z" e @) duda’ . (12.22)
™ — 00 — 00

Let x42" = u in the double integral of (12.22) transform independent variables
from (z,2") to (x,u). We thus have

O(z, ")
O(z,u)

dzdr’ = dudz,

where the Jacobian of the transformation is

dx Oz

INx,z") |0z ou| [10] 1
8(1‘,1&) e o’ | |01 T
oxr Ou

Then (12.22) becomes

F(k)G(k) = % /_00 /_OO f(@)g(u — z)e”*dedu

_ \/%/_D;e—k“{\/%/_z f(a:)g(u—x)dx} du

= Flf+g]. & (12.23)

12.2.2 Cross-Correlation Functions

There are several important functions related to the convolution, which are
called correlation functions (see below) and auto-correlation functions

(see Sect. 12.2.3).

& Cross-correlation function:
The cross-correlation of two functions f and g is defined by

1 [
c(z) = E/—oof (2)g(z + 2)dx. (12.24)
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Despite the apparent similarity between the cross-correlation function (12.24)
and the definition of convolution (12.19), their uses and interpretations are
very different: the cross-correlation provides a quantitative measure of the
similarity of two functions f and g since one is displaced through a distance
z relative to the other.

Remark. Similar to the convolution, the cross-correlation is both associative
and distributive. Unlike the convolution, however, it is not commutative.

We arrive at an important theorem by considering the Fourier transform of
(12.24):

& Wiener—Kinchin theorem:
The Fourier transform of the cross-correlation of f and g is equal to the
product of F*(k) and G(k) multiplied by /2, i.e.,

Fle(2)] = Clk) = F*(k)G(k). (12.25)

ul

2

=
I

C(k) = \/% /_Z dze~ k= {\/12? /_0; [ (z)g(z +x)da:}

= \/% /Z drf*(x) {\/12? /O:O g(z —i—x)eikzdz}.

Making the substitution v = z 4+ x in the second integral, we obtain

o= [ s

i Lo e [l
= F*(k)G(k). & (12.26)

It readily follows from the definition (12.24) and the theorem (12.25) that

1 oo . o0 .
o(z) = — C(k)e™**dx :/ F*(k)G(k)e™ dk. 12.27
(== [ cw [ Pem (12.27)
Then, setting z = 0 gives us the multiplication theorem

/_ N fr(@)g(x)de = /_ N F* (k)G (k)dk. (12.28)
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Further, by letting g = f, we arrive at the following identity:

& Plancherel identity:
A function f(z) and its Fourier transform F'(k) are related to one another
by the identity

| i@pde= [ ipwpa, (12.29)

—00 —00

which is called the Plancherel identity.

Plancherel’s identity is sometimes called Parseval’s identity, aims to the anal-
ogy with Fourier series.

12.2.3 Autocorrelation Functions

Particularly when g(z) = f(x), the cross-correlation function ¢(z) is referred
to specifically as follows:

#® Autocorrelation function:
The autocorrelation function of f(x) is defined by

1 o *
a(2) = o= / P@fa+

Using the Wiener—Kinchin theorem (12.26), we see that

1 > ikx _L > m * e1T
M:E/_wmmekdk_m/_w\/ﬂ (k)F (k)™ dk

1 o .
=— F(k)[e™**dk.
=/ 1P

This implies that the quantity |F(k)|?, called the power spectrum of f(x),
is the Fourier transform of the autocorrelation function as formally stated
below.

& Power spectrum:
Given f(z), we have

F(R)? = %Q_ﬂ / " a(z)e*da,

where F(k) and a(z) are, respectively, the Fourier transform and the auto-
correlation function of f(x).
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This result is frequently made use of in practical applications of Fourier trans-
forms.

12.3 Discrete Fourier Transform

12.3.1 Definitions

The present section includes several topics associated with numerical com-
putation of Fourier transforms. Generally, in computational work, we do not
treat a continuous function f(¢), but rather f(¢,) given by a discrete set of
t,’s. (For now, we assume that a physical process of interest is described in
the time domain.) In most common situations, the value of f(t) is recorded
at evenly spaced intervals. In this context, we have to estimate the Fourier
transform of a function from a finite number of its sampled points.

Suppose that we have a set of measurements performed at equal time
intervals of A. Then the sequence of sampled values is given by

fe=f(tr), th=kA  (k=0,1,2,--- ,N —1). (12.30)

For simplicity, we assume that N is even. With N numbers of input, we can
produce at most N independent numbers of output. So, instead of trying to
estimate the Fourier transform F(w) in the whole range of frequency w, we
seek estimates only at the discrete values w = w, with n =0,1,--- /N — 1.
By analogy with the Fourier transform for a continuous function f(t), we may
define the Fourier transform for a discrete set of f, = f(tx) (k=0,1,--- N—1)
as below.

& Discrete Fourier transform:
The discrete Fourier transform for a discrete set of fi given by (12.30)
is defined by

| N-1 _ | N-1
Fp,=F(w,) = ~ Fltg)e tonte = ~ Z fre 2 kn/N - (19.31)
k=0 k=0
with the definition
2mn
= — =0,1,--- . N —1). 12.32
=2 (n=0,1,, N 1) (12.32)

Note that F}, is associated with frequency w,. Of importance is the fact that
in (12.31), n can be any integer from —oo to oo, whereas k in (12.31) runs
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from 0 to N — 1. The latter restriction is due to the fact that F,, is periodic
with a period of N terms. In fact, for any integer n such that 0 <n < N —1,
we have

Fp = Fnin = Fpton =+

as readily follows from (12.31).

12.3.2 Inverse Transform

Given the discrete transform F;,, we can reproduce the time series fj with the
aid of the inverse relationship:

# Inverse of discrete Fourier transform:
The discrete Fourier transform of a set {fj} satisfies the relation

N-1
fo=)_ Fpe®mkn/N, (12.33)

n=0

Proof For the proof, it suffices to observe that

N-1
Comin(k—k' N (k=F)
2min(k—k")/N __ )
Z;) € - { 0  (otherwise). (12.34)

(see Exercise 1 in Sect. 12.3). Then, from (12.31) and (12.34), we have

N-1 1 N—1N-1
Z FneQﬂ'znk'/N - fke—Qﬂin(k—k’)/N
n=0 N n=0 k=0
1 N—-1
=N Jr - Noggr = frr. &
k=0

Note that the only differences between expressions (12.31) and (12.33) for
F,, and f, respectively, are (i) changing the sign in the exponential, and (ii)
dividing the answer by N. This means that a computational procedure for
calculating discrete Fourier transforms can, with slight modifications, also be
used to calculate the inverse transform. In addition, we see from the inverse
transform that only N values of the frequency w,, are needed and that they
range from 0 to N — 1, just as with the discrete time ty.
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12.3.3 Nyquest Frequency and Aliasing

In the above discussion, we have taken the view that the index n in (12.31)
varies from 0 to N. In this convention, n in F), and k in f vary over exactly
the same range, so the mapping of N numbers into N numbers is manifest.
Alternatively, since the quantity F, given in (12.31) is periodic in n with
period N (i.e., F;, = Fnin), nin F, is allowed to vary from —N/2 to (N/2)—
1. In the latter convention, the discrete Fourier transform and its inverse
transform read, respectively,

N/2-1 1 N/2-1
Fo= Y fre /N and fr= S F,ermt/N(12.35)
k=—N/2 n=—N/2

Emphasis is placed on the fact that in (12.35), the upper bound of the
summation is not N/2 but (N/2) — 1. This ensures the count of w, to
N. Indeed, the periodicity of F, in n with the period N implies that the
descretized frequency w, = 27n/(NA) is also periodic in n with N. Hence,
the two extreme values of w,, i.e.,

i T
W_N/2 = A and WN/2 = A’

contribute to F), as given in (12.31) in the same way. These two indistinguish-
able frequencies are known as the Nyquist critical frequencies.

& Nyquist critical frequency:
A Nyquist critical frequency is defined by

I
C A?
where A is the sampling interval: ¢, = kA (k=0,1,--- ,N —1).

The Nyquist critical frequency has the following peculiarity. Suppose that we
sample a sine wave of the Nyquist critical frequency, expressed by

f(t) = sin(w.t),
at the sampling interval A. Then we have
™

fr = f(t) = sin (wety, + 0) = sin [A

(k=0,1,--- ,N — 1),

(kA + 0)} — sin(kr + 0)

where 6 is determined by the initial condition: f(0) = sinf. Then, the
sampling becomes two sample points per cycle: sinf and — sin 6.

The above arguments further suggest that descretized frequencies w,, above
(and below) w. are identified with w,_n (and wy,yn). This phenomenon,
peculiar to discrete sampling, leads to the following important consequence:



394 12 Fourier Transformation

& Aliasing:

When a continuous function f(¢) is sampled with an interval A, all of the
power spectral density lying outside of the range [—we,w.) with w. = 7/A
is moved into that range. Owing to a phenomenon called aliasing.

Through discrete sampling, therefore, any frequency component outside of the
range [—w.,w.) is falsely translated into that range.

Ezample Suppose that two continuous waves exp(iw1t) and exp(iwst) are sam-
pled with the same interval A. Then, if wy = wy + 2w., we obtain the same
samples, since

exp(iwaty) = exp(iwity) X exp(£2iw,ty)
= exp(iwty) X exp(£2kmi) = exp(iwity),

where t, = kA (k = 0,1,--- , N — 1). Hence, a sinusoidal wave having a
frequency lying outside the range [—w., w.) appears the same as the sinusoidal
wave whose frequency is within the range.

Remark. The way to overcome aliasing is to (i) know the natural bandwidth
limit of the signal — or else enforce a known limit by analog filtering of the
continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present.

12.3.4 Sampling Theorem

We present below a famous theorem that is useful in certain applications of
the discrete Fourier transform.

& Sampling theorem:

Suppose that a continuous function f(t) is sampled at an interval A as
fr = f(kA). If its Fourier transform satisfies the condition that F(w) =0
for all |w| > w. = w/A, then we have

sin wc — kA))
Z fe— k)

This theorem states that if a signal f(¢) that is in question is bandwidth-
limited (i.e., F(w) = 0 for |w| > |wp|) with a certain preassigned frequency wy,
then the entire information content of the signal can be recorded by sampling
it at the interval A = 7/wy.
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Proof Given a continuous function f(t), we express it by the inverse Fourier

transform as
1 i )
t) = — F(w)e™tdw.
)= o= [ P

From hypothesis, F(w) vanishes at w > |w.| so that

1 [ .
1) = o= [ Pwpeta

which yields
1 e |
fty) = N /wc F(w)e™™dw for ty, =kA (k€ Z).

Consider the Fourier series expansion of F(w) as

F(w) = Z cre” ™t for |w| < we, (12.36)

k=—o00
where the coefficients ¢;, read

- \/%Tr _u; F(w)e™™dw = f(ty). (12.37)

From (12.36) and (12.37), we obtain

Ck

Fw)= Z ftp)e ™ for |w| < we.

k=—oc0

Now we define
H(w) = Z f(ty)e ™t for all w.
k=—oc0
While the function H(w) is a periodic function with period 2w, the F(w) is

identically zero outside the interval [—w.,w,|. This being so, we can write

1wl <w,

F(w)=H(w)S(w) with S(w)= {0 w| > we.

Thus we have

Flw)= ) fltr)e ™" Sw),

k=—o0
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and its inverse transform reads

f(®) m/ [ (tk)ei“’t’“S(w)] et dw

= Z f(tk / zw(t t")dw

k=—oc
=S )= / W)=t doy
k=—o0
B smwc( tr)]
7k_z,:oof wlt—tn)

12.3.5 Fast Fourier Transform

The fast Fourier transform (often abbreviated by FFT) is an algorithm for
calculating discrete Fourier transforms and is widely known as a useful tool
in computational physics. In this subsection, we demonstrate the efficiency of
this computational method.

In a typical discrete Fourier transform, one has a sum of N terms expressed
by

N—-1
=3 W, (12.38)
k=0

where W is a complex number defined by

W = e2m/N,

Notably, the left-hand side of (12.38) can be regarded as a product of the
vector consisting of the elements {f;} with a matrix whose (n, k)th element
is the constant W to the power n x k. The matrix multiplication produces
a vector whose components are the F},’s. This operation evidently requires
N? complex-number multiplications plus a smaller number of operations to
generate the required powers of W. Thus, the discrete Fourier transform ap-
pears to be an O(N?) process.

The efficiency of the fast Fourier transform manifests in the fact that it en-
ables us to compare the discrete Fourier transform in O (N log, N) operations.
The difference between O(N?) and O(N log, N) is immense. With N = 108,
e.g., it is the difference between, roughly, 2s and 3 months of CPU time on a
gigahertz cycle computer.

The fast Fourier transform is based on the fact that a discrete Fourier
transform of length N can be rewritten as the sum of two discrete Fourier
transforms, each of length N/2. This is easily seen from (12.38) as follows:
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N-1
F, = eQﬂ'ik:n/ka
k=0
N/2—1 N/2-1
_ Z 627Tin(2k)/Nf2k + Z 627rin(2k+1)/Nf2k+1
k=0 k=0
N/2-1 Nj2-1
— Z 627Tink/(N/2)f2k + W Z (__/,27r7lnk/(1\7/2)f2k+1
k=0 k=0
= FC + W"FP. (12.39)

Here W is the same complex constant we defined in (12.38). The F¢ denotes
the nth component of the Fourier transform of the sequence (far) with length
N/2 expressed by

(ka) = (f03f27f4a"' 7fN—2)7

which consists of even components of the original fi’s. Similarly, the F}? is the
corresponding transform of length N/2 formed from odd components. Recall
that F,, is periodic in n with the period N. On the other hand, the transforms
F¢ and F? are periodic in k with length N/2. This period-reduction property
is the origin of the efficiency of the fast Fourier transform as demonstrated
below.

Having decomposed F}, into F} and F?, we can apply the same procedure
to F¢ and F? to produce N/4 even-numbered and odd-numbered data:

N/4—1 N/4—1
F»: — Z e27rink/(N/4)f4k + Wk Z eQ‘n’ink/(N/4)f4k+2
k=0 k=0
— Fo { WnEe, (12.40)
N/4—1 N/4—1
Fg — Z eQTrink/(N/4)f4k+1 + W Z e27rink/(N/4)f4k+3
k=0 k=0
= F° 4+ W"F. (12.41)

Here, the F°, e.g., is the transform of the sequence (fir+2) given by

(f4k+2) = (f27f6;"' 7fN72)7

whose length is N/4. We can continue the above procedure until we obtain
the transform of a single-point sequence, say,

Frroeeoeooce — £ for some k. (12.42)

This implies that for every pattern of log, N e’s and o’s, there is a one-point
transform that is just one of the input numbers f;. Therefore, by relating
all the terms fi, (0 < k < N — 1) to logy N patterns of e’s and o’s and
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then tracking back to the procedures (12.39), (12.40), (12.41), and (12.42) to
reproduce F,,, we will successfully obtain the discrete Fourier transform Fj,
(0 <nm < N —1) of the original data fr (0 <k < N —1).

One may ask a question as to the way we can figure out which value of
k corresponds to which pattern of e’s and o’s in (12.42). As we demonstrate
later, this can be achieved by reversing the pattern of e’s and o’s and setting
e = 0 and o = 1. Then, we have the corresponding value of k in a binary
expression. This idea of bit reversal can be exploited in a very clever way
that makes FFTs practical.

12.3.6 Matrix Representation of FFT Algorithm

To make our discussion more concrete, we now present an actual FFT pro-
cedure to obtain the discrete Fourier transform F(n) (n = 0,1,2,3) of the
original vector data f(k) (k = 0,1,2,3). By definition, F'(n) is given in the
matrix representation as

F(0) WO Wwo wowo 1£(0) 11 1 1 £(0)
F(1) WO W W2 W | | £(1) 1 WIW2 W | | (1)
FE)| T (wowrwrwe | | fe)| T |t wrwow?| | f@) |’
F(3) WO W3 W WO | | £(3) 1 W3 W2wW | f(3)

where we used the fact that
W4 — (€2m'/4)4 L P

More generally, we have
Wnk: _ Wnk mod(N)
where the number
nk mod(N)

is the remainder when the integer nk is divided by N. The trick involved in
the FFT algorithm is to decompose the product of the vector and the matrix
appearing in (12.43) into that of a vector and two matrices:

F(0) 1 W°0 0 10w 0 £(0)
F@2)| |1 W0 0 01 0 Wo||f(Q)
FO)| |00 1 w! 1 0W?2 0 f) | (1244)
F(3) 00 1W3|][0o1 0 W' [f(3)

The equivalence between (12.43) and (12.44) is verified in a straightforward
manner. Nevertheless, the reader should pay attention to the fact that in
(12.44), the order of elements in the vector F'(n) is altered from that in the



12.3 Discrete Fourier Transform 399

original form (12.43). As we demonstrate later, this altering property of the
order of F'(n) enables us to compute efficiently the F(n) from f(k) with the
help of the bit-reversing process.

The efficiency of FFT can be observed by counting up the number of
multiplication (and additions) between matrix elements in order to complete
the matrix operation given in (12.44). First we set

£1(0) 10w 07 /0
f1(1) 01 0 W°||/fo(1)
AR [T owW2 0 || @]
f1(3) 01 0 W! fo(3)

in which fo(k) = f(k) (k = 0,1,2,3). Then f;(0) is obtained through one
complex-number multiplication and one complex-number addition, i.e.,

£1(0) = fo(0) + WO fo(2). (12.45)

We can obtain f1(1) in the same manner as above. On the contrary, to obtain
f1(2), only one complex-number addition is needed due to the relation W? =
—WO. In fact,

f1(2) = fo(0) + W?fo(2) = fo(0) = WO fo(2),

in which the product W°fy(2) was evaluated earlier in the calculation of
(12.45). Likewise, f1(3) is also computed by only one addition owing to the
relation W2 = —W?'. As a consequence, the vector fi(k) (k = 0,1,2,3) is
calculated through four-times additions and two-times multiplications.

A similar scenario can apply to the remaining computation:

F(0
F(2

( f2(0) 1 wWlo o £1(0
(

F(1
(

(
f2(1) 1 W20 0 fid
L@ {00 1WA
f2(3) 00 1w f1(3
Calculation of each number f3(0) and f2(2) requires both one addition and
one multiplication, whereas for f5(1) and f2(3) only one addition is required
because of the relations W? = —W° and W2 = —W?'. Therefore, the entire
computation to yield F'(n) in the above context requires four-time multiplica-
tions and eight-time additions. This computational cost is significantly small
compared with the direct matrix calculation given in (12.43), where 16-times
multiplications and 12-times additions are needed. More generally, when con-
sidering the transform F'(k) of the length N = 27, the FFT procedure requires
the multiplications of N+/2 times and the additions of N+ times, whereas the
direct matrix calculation procedure demands NZ2-times multiplications and
N(N — 1)-times additions. Thus the superiority of FFT method is consider-
ably enhanced when N >> 1.

)
)
)
F(3)

)
)
)
)
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12.3.7 Decomposition Method for FFT

It is still unclear as to how we can find an appropriate decomposition of general
N x N matrices as performed in (12.44). To see this, we express the indices
n and k in terms of two-digit expressions:

n=2n1 +ng, k =2k + ko,

where each ni,ng, k1, ko takes the value 0 or 1 [e.g., n = 3 corresponds to
(ng,m1) = (1,0)]. Then, the discrete Fourier transform reads

1 1

F(nl,no) = Z Z fo(kj, ko)W(2n1+nD)(2kl+k°).

ko=0 k1=0
Now we apply the identity

W(2n1 +no)(2k1 Jrk()) — W4n1 k1 W2n0k‘1 W(2n1+n0)k0 — W2’n0k‘1 W(2n1+no)k0

to obtain

1 1
F(nino) = | D folkr, ko)W2noks | jyy@matnoko, (12.46)

ko=0 Lk1=0

Denoting the sum in the square bracket by f1(no, ko), we have

1

J1(no, ko) = Z folke, ko) W2noks, (12.47)
k1=0
or equivalently,
fl(oa 0) = f0(070) + f0(170)W07
fl(o? 1) = f0(07 1) + fO(]-v 1)W07
f1(1,0) = f5(0,0) + fo(1,0)W?2,
f1(1,1) = £o(0,1) + fo(1, W™
This system of equations is expressed in matrix form as
£1(0,0) 1 0wWo 0 f0(0,0)
f1(071) o 01 0 wo fO(Oa 1)
fi(1,o)| |1 0W?2 0 fo(1,0)
f1(1,1) 01 0 W | fo(1,1)
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Similarly, from (12.46) and (12.47), it follows that

f2(0,0) 1L Wo0 0 f1(0,0)
f2(0,1) 1L W20 0 || A1)
f1,0)y| ~ [0 0o 1w | A0
fa(1,1) 00 1w [f(1,1)

Hence, we have
F(ni,n0) = fa(no,n1),

in which the order of ny and n; in the parentheses differs on the two sides.
This indicates that the individual numbers f3(ng,n1) are in order not of
n = 2n1 + ng, but of the numbers obtained by bit-reversing n, which is why
the bit-reversing process is required to obtain the discrete Fourier trans-
form F(n) using FFT, The above discussion also clearly demonstrates the
way to construct the decomposed product of matrices that makes the entire
computations a fast.

Exercises

1. Show that

N-1 .
Z o 2min(h—ky/N _ [N i k= k',
. 0 otherwise,
where k and k' are integers ranging from 0 to N — 1.

Solution: The proof for the case of k = k' is trivial. When k = £/,
then

e—27rin(k—k/)/N 7&1 and e—27rin(k—k:/) =1

for any choice of k and k’, so that we have

N*l : !

) , 1— —2min(k—k")
E 67271’7/!1(}(37]{} )/N _ - e =0. &
n=0

— e—2min(k—k')/N

12.4 Applications in Physics and Engineering

12.4.1 Fraunhofer Diffraction I

In optics, Fourier transformation is a powerful tool to describe an important
class of wave diffractions, called Fraunhofer diffraction; this refers to the
diffraction of electromagnetic radiation observed at a point far from a slit or
an aperture. A Fraunhofer diffraction pattern can be described by using the
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wave theory of light, which predicts the areas of constructive and destructive
interference.

Let us derive the diffraction pattern produced by a rectangular aperture
with width a and height b. We assume that both incident and diffracted waves
can be approximated as being plain waves with wavelength A. In order to make
this assumption, the diffracting obstacle and the observation point must be
sufficiently far from the light source so that the curvature of the incident and
diffracted light can be neglected (see Fig. 12.1). According to elementary wave
optics, the amplitude of light at R on the screen is given by

(aperture)

(screen)

Fig. 12.1. Configurations of the light source, a recrangular aperture, and the screen

ik

_ / ik\R—’r"|d /
2k s u(r’)e r.

u(R) =
Here, k = 27 /\, AS’ represents the area of the rectangular aperture through
which light passes and u(7’) is the amplitude of the incident wave at ' within
the aperture:
u(r’) = Atk

We assume that this incident wave is oriented in the direction of the z-axis.
Then, the wave vector k is perpendicular to the position vector 7’ so that

u(r') = A = const.
Hence, we have

kA [0 ik| R—7'|
u(R) = _ﬁ/—a dx /_b dy'e . (12.48)

Set R = (z,y,2) and v’ = (2/,4/,0), where the origin is located at the center
of the aperture. Under the assumption that z > |z|, ly| and ||, |y| > |2/|, [v/],
we have
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IR—7'| =2+ (x—a')2+ (y—¢)?

= \/R2 — 2z’ +yy') + ' + y'?

NR<1_xx’+yy'+a:’2+y’2> NR(I_m:’ery’)

R? 2R? R?

Substituting this into (12.48) yields

. a ) b _
u(R) _ikA 6ikR/ eftg%,dx'/ e R dy’
—b

2R _a
. kax . kby
_2ikA Ly PR MR
TR T TR Ry
R R

The light intensity distribution I(R) on the screen is thus given by

in(kai) sin(kbj) ]’
I — 2 2 2,0 [sin(
(R) = [u(R)” oc k7a™b” | —— T :

where

Remember that (sin€)/§ = 0 at £ = +nn with integers n = 1,2,---. In
addition, since k = 27/, we conclude that

nA
2b’

which describes the diffraction pattern generated on the screen.

A
I(R)=0 at i:i% or =+ (myn=1,2,---),

12.4.2 Fraunhofer Diffraction II

We next consider the case of a circular aperture with radius a. For convenience,
we use the polar coordinates defined by = rcosf, y = rsin . Then (12.49)
reads

o ! !
W(R) o ¢FR / exp {Z’C(w‘xwy)} ar
As R

_ /a ar /27r d0'r’ exp {—ikrr"(cos 0 cos O + sin 6 sin 9’)}
- R
0 0

= /a dr’ /2” do'r’ exp {—ikrr’ cos(9” - 9)} .
0 0 R

To make it consise, we use the following formulae based on the Bessel func-
tion J,(x):




404 12 Fourier Transformation

27
/ e dp = 21.Jy (C) / CJo(¢) = nJi(n).
0

)

R
where the explicit form of J;(x) is obtained from the definition of J, (z),

J ( ) x/22é

e'ry+e+1)

These give us

u(R) o 2ma*

and thus lim,_,o J1(z)/x = 1/2. The first zero of J; (x) is located at « ~ 1.227.
Therefore, the radius ry of the innermost dark ring on the screen is given by

k 0.61\
T 1997, ie., 1o R

a

12.4.3 Amplitude Modulation Technique

We conclude this chapter with a discussion regarding the use of Fourier trans-
formations in an amplitude modulation (AM) technique. This technique
is used in electronic communication, most commonly for transmitting infor-
mation via a radio carrier wave. As the name indicates, AM works by mod-
ulating the vibrational amplitude of the transmitted signal according to the
information being sent. This is in contrast to the frequency modulation
(FM) technique that is also commonly used for transmitting sound, but by
modulating its frequency.

For AM, we use two kinds of waves: a carrier wave c(t) and a message
wave m(t) that contains information on the message to be transmitted. For
simplicity, the carrier wave is modeled here as a simple sine wave written as

c(t) = C - cos(wet + ¢e),
where the radio frequency (in Hertz) is given by w./(27). C and ¢. are con-
stants representing the carrier amplitude and the initial phase, respectively,
and their values are set to 1 and 0. AM is then realized by determining the
product:
y(t) = m(t) - c(t),
whose Fourier transform Y (w) is expressed as
Y(w) = Flm(t)c(t)]

. ezwct + efuuct

= \/127(/ m(t)e " 5 dt
- % [M(w +we) + M(w — wy)]. (12.49)

Here M (w) is the Fourier transform of m(t).
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Fig. 12.2. Top: A carrier wave c(t) = sin(w¢t) with w. = 5.0 and a message wave
m(t) = 2exp[—(t — to)?/4] with to = 1.5. Middle: The products c(t)m(t) = y(t) and
A (t)m(t). Bottom: The power spectra | Fly(t)]|* and |Fle(t)y(t)])?
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The result in (12.49) implies that the modulated signal y(t) has two groups
of components: one at positive frequencies (centered at +w.) and one at neg-
ative frequencies (centered at —w.). Figure 12.2 illustrates a carrier wave
c(t) = sin(w.t) with w. = 5.0, a message wave m(t) = 2exp|—(t —t9)?/4] with
to = 1.5, and the power spectrum of y(t) = c(t)m(t) [i.e., w-dependence of
Y (w)] described by (12.49), together with the associated message wave m(t).
The frequency shift from w to w 4 w,, which is clearly evident, facilitates the
tuning of the frequency of the transmitted signal to the desired value. We are
concerned only with positive frequencies. The negative ones are mathematical
artifacts that carry no additional information.

In order to reproduce the original signal m(t) from the modulated one
y(t), it is sufficient to multiply ¢(¢) by y(¢) and follow that with a filtering
process. The Fourier transform of the product c(t)y(¢) is given as

Fle(t)y(t)] = Flm(t) cos®(wet)]
M(w)

1
= +Z[M(w+2wc)+M(w72wc)].

We pick up the first term in the last expression and take its inverse transform,
thus obtaining F~[M (w)] = m(t).
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Laplace Transformation

Abstract Using the Laplace transform for the mathematical description of a phys-
ical system considerably simplifies the analysis of its behavior Many useful applica-
tions and formulas related to Laplace transforms can be found in other textbooks,
but here we focus on the theoretical background, particularly, on the convergence
properties of the various forms of Laplace transforms. It is important to note that a
Laplace transform exists only if the corresponding improper integral, known as the
Laplace integral, converges. Hence, the convergence of the improper integral must
be confirmed prior to discussing the Laplace transform of a given function. Thus we
devote a portion of this chapter to an analysis of the conditions necessary for the
convergence of Laplace integrals, in contrast to the standard literature that deals
primarily with the practical applications of Laplace transforms.

13.1 Basic Operations

13.1.1 Definitions

The Laplace transformation associates a function f(x) of a real variable x
with a suitable function F'(s) of a complex variable s. This correspondence is
essentially a reciprocal one-to-one and often allows us to replace a given com-
plicated function by a simpler one. The advantage of this operation manifests
particularly in applications to problems of linear differential equations (see
Chap. 15). We shall see that the Laplace transformation allows us to reduce
a linear differential equation of f(x) to a certain simple algebraic equation of
F(s), which yields solutions of the original differential equations more readily
than other techniques. Furthermore, it turns out that this reduction method
can be extended to systems of differential equations (ordinary and partial) as
well as to integral equations, which enhances the importance of studying and
understanding the Laplace transform.

To begin with, we define the Laplace transformation operator L that maps
a function f(z) to a corresponding function F(s):
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& Laplace transformation:
The (one-sided) Laplace transformation, denoted by the operator L,
is defined by

L[ ()] = / " e f(a)de = F(s), (13.1)

which associates an image function F'(s) of the complex variable s = o +iw
with a single-valued function f(z) (z real) such that the integral (13.1)
exists.

& Laplace integral:

The integral given in (13.1) is called the Laplace integral. If the
Laplace integral exists for a given f(x), the image function F(s) is called
the (one-sided) Laplace transform of f(x).

It is important to keep in mind the difference between the Laplace integral
and the Laplace transform. Namely, the Laplace transform exists only when
the Laplace integral exists (i.e., converges). Convergence properties of Laplace
integrals are determined by the value of s and the feature of the function f(x),
which is discussed fully in Sect. 13.3. In the meantime, we assume that f(x)
is a function that allows the Laplace integral to converge for certain s.

13.1.2 Several Remarks

Below are several important remarks regarding the properties of the Laplace
transform (13.1).

1. The definition (13.1) states that for a given F'(s), there is at most one con-
tinuous function f(z). Nevertheless, it does not determine a unique f(z)
because if f(z) in (13.1) were altered at a finite number of isolated points,
F(s) would remain unchanged, as such discontinuous points make no con-
tribution to the integral. For this reason, we assume in the remainder of
this chapter that f(z) is continuous except at isloated points.

2. In order for the integral (13.1) to exist, any discontinuity of the integrand
inside the interval (0,00) must be a finite jump so that there are right-
hand and left-hand limits at those discontinuous points. An exception is a
discontinuity at = 0 (if it exists); for instance, the function f(z) = 1//x
diverges at t = 0 but the integral (13.1) exists.

3. The inverse Laplace transform of F(s) is a function f(x) such that
L[f(z)] = F(s). Hence, the operation of taking an inverse Laplace trans-
form is denoted by L~! and we have
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L7HF(s)] = f(x).
This expression implies the possibility of dealing with the operators L
and L~! algebraically, just as the equation ax = y can be rewritten as
x = a~'y. At thus point, it is not clear as to how the inverse operation

L~ is to be performed, but actual manipulations are discussed in detail
in Sect. 13.4.2.

4. Not every function F(s) has an inverse Laplace transform. A sufficient
condition for F(s) to have its inverse transform is presented in Sect. 13.4.2.

13.1.3 Significance of Analytic Continuation

Observe that the Laplace integral (13.1) involves a complex-valued term e~5*

in its integrand, which makes it difficult to employ the standard methods
of integration that are applicable to real integrands. One way to proceed
would be to use the equation e™** = e~ 7% coswz — ie~ 7% sin wx, which yields
two real integrands. This is, however, more complicated than necessary. An
easier method is to make use of the following theorem, which is verified in
Sect. 13.3.7:

& Analytic property of Laplace transform:

The Laplace transform F(s), which is a complex-valued function of a
complex variable s, is an analytic function in a region of Re (s) > o,
with a specific real number o..

| Remark. Just at Re(s) = 0., however, no general conclusion can be drawn.

This theorem states that once the value of F(o) on the real axis is known,
F(s) on an arbitrary point of the complex plane can be obtained by simply
replacing o by s. This replacement is based on an analytic continuation
from the semi-infinite line of the real axis, ¢ > 0., to the right half of the
s-plane, Re (s) > o, which is why we can perform the integration (13.1) as if
s were a real variable. Several examples given later clearly show the efficacy
of identifying s as a real parameter.

At first glance, the formality of replacing o by s amounts simply to a
change in symbol. But, without analytic continuation, we could no longer
regard our replacement from o to s as a mere formality; i.e., the concept of
analytic continuation lurks in the background.

Remark. In particular, those cases in which F(s) becomes multivalued cannot
be treated without paying heed in detail to the difference between o and s.
The latter issue regarding multivalued F'(s) is discussed in Sect. 13.2.5.



410 13 Laplace Transformation
13.1.4 Convergence of Laplace Integrals

Emphasis is placed on the fact that the Laplace integral (13.1) may or may
not exist depending on the value of s as well as the nature of f(z). A sufficient
condition for the Laplace integral to converge is that the real component of
s, Re(s), is greater than a specific value. This intuitively follows from the
definition (13.1) that says if the integral (13.1) exists for

So = 0o -+ iwo,

then the integral also exists for every s such that Re (s) > o, since in the
latter case

|efs;r| < |efsgx| _ efo'ow.

This is stated rigorously in the theorem below.

& Convergence of Laplace integrals:
If the Laplace integral

/oo f(z)e > dx (13.2)
0

converges for Re (s) = o0, then it also converges for Re (s) > oy.

The proof is given in Sect. 13.3.4. This theorem implies the existence of a
specific real number o, such that the integral (13.2) converges for Re (s) > o,
and diverges for Re (s) < o (see Fig. 13.1). The number o, is called the
abscissa of convergence of the Laplace integral, whose value depends on
the nature of the function f(x). With this notation, we say that the region
of convergence of the Laplace integral is a half-plane to the right of
Re (s) = o.. This region of convergence is of course identified with the defining
region of the Laplace transform F'(s).

Remark. By definition, o, may take —oo (or co), which means that the integral
(13.2) converges (or diverges) for all o.

Ezamples Set f(x) =1 for every x > 0. Then

[e%S) X
e “dr = lim s %dx
0 X—00 Jg

X
—S8Tr 1 1
lim {s } == —2 lim e *¥.
0

L{f(x)]

X —o00 —S
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Hence, we have
1
Lif(z)]=- for s> 0.
S

For s < 0, the integral does not converge. This indicates that in this case
o. = 0.

Ims

of  oct

Fig. 13.1. The abscissa of convergence o, to the right of which the Laplace integral
converges

13.1.5 Abscissa of Absolute Convergence

When the Laplace integral converges in the ordinary sense, it might converge
absolutely in part or in all of its converging region. (Remember that the con-
ditions for absolute convergence are more stringent than those for ordinary
convergence). This leads us to define an abscissa of absolute convergence as
follows:

& Abscissa of absolute convergence:

Suppose that the Laplace integral (13.2) converges absolutely for
Re(s) = o as

/Oo £ (@)e="| do = /oo | (@)]e~"%dz < oc. (13.3)
0 0

The greatest lower bound o, of such a oy that satisfies (13.3) is called the
abscissa of absolute convergence of the Laplace integral (13.2).

Thus once o, is determined, we say that the integral (13.2) converges ab-
solutely for o > o,, does not converge absolutely for ¢ < o0,, and may or
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may not converge absolutely at ¢ = o,. Since absolute convergence implies
ordinary convergence, it is clear that
0. < 0.

The following example shows that o, does not generally coincide with o, (see
Fig. 13.2).

Ims

0] oct ou
Fig. 13.2. The abscissa of convergence o. and the abscissa of absolute convergence
Oa

Ezample f(z) = e* sine®

Set u = €”; then we have

oo o0 :
_ : sinu
F(s) = / e *Te¥sine”dxr = / du.
0 1

uS

The integral converges absolutely for Re (s) = o > 1, converges conditionally
for 0 < 0 < 1, and diverges for ¢ = 0. Hence, we have

o.=0 and o, =1,

which clearly indicates that in this case o, # 0.

13.1.6 Laplace Transforms of Elementary Functions

Let us evaluate the Laplace transforms F(s) of several classes of elemen-
tary functions. We treat the complex variable s as if it were real, bearing in
mind that this formalism is based on the analyticity of F(s), as discussed in
Sect. 13.1.3. The defining region of each F(s) is found on the right-hand side
of the equation in question.

1. f(z) = 2™, where n is a positive integer.

Integrating by parts, we have
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oo
F(s) = L[z"] :/0 z"e dx

_n,—sxr X oS}
:[xe] +ﬁ/ 1oty (13.4)
S 0 S 0

Since s > 0 and n > 0, the first term in the last expression of (13.4)
vanishes. Iteration of this process yields

n nn—1)(n-2)---2-1 n!
Tl = s
since L[t°] = L[1] = 1/s. As a result, we have
F(s) = Ll = 0
() = Ll = 0 (0> 0)
. f(x) = e where a is a real constant.
oo
F(s) = L[e*™] = / e e dr = (o> a).

0 s—a

. f(z) = sinax, where « is a real constant.

Integrating by parts twice, we obtain

F(s) = L[sin ax] z/ e **sinaxdx
0

e %" RO B
{— cos a:r} + - / (—s)e " cos axdx
a 0

0 a
1 s e 5% | g [

= - — - sin ax + - e **sinaxdx
a a a 0 a Jo
1 52

= - - LR,
a a

— ST

where we have used the fact that as s is positive, e — 0 as x — o0,

whereas sin ax and cos ax are bounded as x — co. Eventually, we set to

F(s) = L[sinax] = Tia (o >0).
In a simiar manner, we obtain
L{cosax] = /0 e % cosaxdr = o (0 >0).
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4. f(x) = coshazx, where a is a real constant.

Using the linearity property of the Laplace transform operator L, we ob-

tain
ar —ax 1 1
Llcoshaz] = L {ege} = §L[e”] + iL[e*‘”]
1 1 1 s
= = > lal).
2(s—a+s+a) s?2 —a? (o> |al)
Exercises

1. Show the linearity of the Laplace transformation operator L.

Solution: It follows from the definition of the operator L that

Lierf(2) + cag(e)] = / T e e f(x) + eag(a)}da

:cl/ e‘”f(x)dw—i—cz/ e g(z)dx
0 0

=1 L[f(x)] + c2L[g(x)],

where ¢; and ¢y are arbitrary constants. This clearly shows the linearity
of the operator L. &

2. Find the Laplace transform of the function,

0, 0<z<e,
f(x)_{l, T >c.

Solution: L[f(z)] = /OO e f(x)dx = /00 e dr=e"/s (o >0).
0 c
&

3. Show that if f(z) is real and F(z) = L[f(z)] is single-valued, then F(s)

is real.
oo

Solution: Set s = ¢ > o, in the equation F(s) :/ fx)e **dx.

0
Then the integrand f(xz)e™ 7% is real, so F'(o) is real. This establishes
that F'(s) is real on the real axis to the right of the point s = o.. In
view of analytic continuation, therefore, F(s) is a real-valued analytic
function. &
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13.2 Properties of Laplace Transforms

13.2.1 First Shifting Theorem

In physical applications, we are sometimes required to calculate the Laplace
transform of functions multiplied by exponential factors such as

e—azf(x)7

where a is real or complex. This kind of problem can be simplified by applying
the theorem below.

® The first shifting theorem:

If F(s) = L[f(x)] for o > o, then
F(s+a) = Lle™** f(z)]

for 0 > 0. — Re (a), where a is real or complex.

Proof Suppose o, to be the abscissa of convergence for F(s). Then the integral

Ooef‘”" r)e Tdr = - z)e” Tt gy .
| e | @ (13.5)

clearly converges for Re (s + a) > o.. Observe that the integral on the right-
hand side of (13.5) is an expression for F(s 4+ a). Thus we have the general

result:
L{e*f(z)] = F(s + a),

where F(s) = L[f(z)]. &

The above theorem states that if we know the Laplace transform of any func-
tion, the transform of that function multiplied by an exponential can imme-
diately be obtained by a simple shift (or translation) in the s variable.

Ezxamples 1. The first shifting theorem tells that

n

Lle™*"2"] = (s + a)n+17

o> —a,

since n
L[J?n] = ﬁ’ o> 0.
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2. Similarly, it follows from the first shifting theorem that

—ar ; b
L[e Slnbt] = m7 o> —a,
where we use the fact that
a
Llsinat] = ——.
[sin at] >

13.2.2 Second Shifting Theorem

For the next case, assume again that a function f(x) has a transform F(s)
and consider a shift in the x variable from = to x — xg, where x( is a positive
constant. Stipulating that the new function be zero for * < xzg, it can be
written

[z = 30)0(x — 20), (13.6)
where 0 0
, o < U,
9<I){1,x>0.

The Laplace transform of the shifted function (13.6) is thus represented by
the integral

/ [z —20)0(x — xp)e™ *Fdx = / flz —xzp)e™**du.
0 x0
Now we change the variable of integration to ' = x — x, which gives us
o0 ’
L[f(x —x0)0(x — x0)] = e **° / fthe st dax’ = e 5" F(s).
0
The result is stated formally below.

& The second shifting theorem:
If F(s) = L[f(z)] for o > o, then

e 5% F(s) = L[f(x — x0)8(z — z0)]

for o > 0., where 6(z) is a unit step function and T is a real and positive
constant.

Ezxamples Consider the Laplace transform of the function

0 (z<0),
fl)=q1/a (0<z<a),
0 (z>a).
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Using the step function, we express it as

f(ac) _ 9({17) — Z(x — a’).

Hence, it follows from the second shifting theorem that

L] —e *L] 1—e*
a T as

Lif(z)] =

Note that in view of I’Hépital’s rule, when a — 0, L[f(z)] = 1. The latter
result means that the Laplace transform of f(z) equals 1.

13.2.3 Laplace Transform of Periodic Functions

We now counsider the Laplace transform of a periodic function f(z) of period
A, ie., f(z+ A) = f(z). Assuming that the f(z) is piecewise continuous, we
have by definition

Lif ()] = / T e f()de
3\

A 22
:/0 efsmf(x)dx—k/)\ efszf(x)da:—k/ e T f(x)dx + - .

2X

On the right-hand side, let * = u + A in the second integral, z = u + 2\ in
the third integral, and so on. We then set

A A
Lif(z)] = /0 e ** f(z)dx —|—/0 e 2N fu 4+ N)du

A
+/ e SN Fy 4 2\ du + - -
0

From hypothesis, f(u + A) = f(u), f(u+ 2X\) = f(u), etc. Replacing the
dummy variable u by x yields

A
L) = e+ ) Lot i@y

L
= 7/0 e f(x)dx. (13.7)

1—esA
Once we introduce the function

[ J@),0<t<A
folw) = {O7 otherwise,
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equation (13.7) becomes

FO(S)
1—e—sA’

Lf(2)] =

where

[eS) A
Foo) = [ e haoyde = [ e o
0 0
So we have proven the following result:

& Laplace transform of a periodic function:

If f(x) is a periodic function of period J\, its Laplace transform is given
by

F(s) = % (13.8)

where

A
Fo(s)z/0 e T f(x)dx

Ezxamples Consider the Laplace transform of the periodic square wave de-
scribed by f(z 4 2XA) = f(z) with

1 0<z <)),
f(x):{l A<z <2)N).

From (13.8), we obtain

2
F(s) = % | e sty

1 —6_25)‘ </ /2A> c

13.2.4 Laplace Transform of Derivatives and Integrals

The Laplace transform of derivatives is a most important issue in terms of
applications for solving differential equations. We shall see below that through
the transform, certain kinds of differential equations are reduced to algebraic
equations that are easy to manipulate.
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& Laplace transform of derivatives:

If F(s) = L[f(x)] for o > 0. and if

tll)rgloe “f(x)=0 for o> o, (13.9)
then we have
LIf'(@)] = sF(s) - £(0). (13.10)

Proof Integration by parts yields

Mﬁuﬂ=£m€”f®Mx

= [e’”f(z)}go - /Om(—s)esxf(x)dx. (13.11)

The second term on the right-hand side of (13.11) converges to sF(s) for
o > o.. In addition, the first term reads f(0) from the hypothesis of (13.9)
Thus for ¢ > 0., we obtain (13.10). &

This result can be extended to cases of higher derivatives.

# Laplace transform of higher derivatives:

Suppose f(x) to be such that f(»~1)(z) is continuous. If F(s) = L[f(x)]
for o > 0. and if
lim e =% f®) () = 0

t—o0
for k=0,1,--- ,n—1 and o > o, then
n
[f(n)( an kf(k 1)
k=1

The above theorem is central to the use of the Laplace transform for solv-
ing differential equations with specified initial conditions (i.e., initial value
problems).
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[ Laplace transform of integrals:
If g(x) = [, f(u)du, L[f(x)] = F(s) and if

tllr(r)lo e g(x) =0,
then r
Lig(a)] = T

Proof From hypothesis, we have g(0) = 0 and ¢(s) = f(x), and thus
Llg'(x)] = L[f (2)].
The left-hand side becomes
Llg'(z)] = sL[g(x)] — g(0) = sL[g(x)].

As a result, we obtain

13.2.5 Laplace Transforms Leading to Multivalued Functions

Some care should be taken when the Laplace transform results in a multi-
valued function. A typical example is the transform of the function

(z > 0). (13.12)

Although this function has a singularity at z = 0, the improper integral
having a real integrand,

o
d 13.13
Tl (13.13)
converges for o > 0. In what follows, we first evaluate the integral (13.13) and
then continue analytically with the result to arrive at a suitable region of
the complex s-plane where we can get a precise form of F(s).
The integral (13.13) can be readily evaluated by setting oo = u?; then it
reads JE
2 /OO 2 T
— e "du=——=. (13.14)
Vo Jo Vo
Now we would like to continue analytically to take the result (13.14) to the
complex s-plane. At first glance, it suffices to replace /o by /s symbolically.
However, this is not sufficient because the function /s is double-valued (e.g.,
when s = i = e™/2, /s may take the two distinct values: e™i/* and e~ 3mi/4,
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. i

0 1 0 1
\ J exp(—37if4) J
]

Fig. 13.3. The double-valuedness of the function /s

(see Fig. 13.3). Thus we have two possible choices (i.e., two sheets of Riemann
surfaces) when performing analytic continuation from the real single-valued
function /o to the complex double-valued function /s. We go into only one
sheet of Riemann surface, the choice being the one on which the points of /o
are situated [i.e., the right half of the whole s-plane, expressed by Re (s) > 0].
With this convention, we arrive at the result

Fls) =L [\H - ‘/\g (13.15)

where the symbol /s implies the single-valued branch mentioned above.

Remark. If the above case had been treated throughout with the variable s
retained, the formal variable change would have led to the factor 1/4/s as in
(13.15). However, we would not then have a clear meaning for /s; i.e., there
would be no way to determine which branch is to be taken.

Exercises
1. Show that
A f(#) = [y 5E ()
and

lim f(z) = lim sF(s),

T—00 s—0

where the Laplace integral L[f(z)] = F(s) converges for o > 0.
Solution: Take the limits s — oo on both sides of equation
/OOO f(z)e **dx = sF(s) — f(0). (13.16)
Then we have 0 = lim,_, o sF(s) — f(0+), which gives us our first re-

sult. Moreover, in the limit s — 0, the left-hand side of (13.16) reads
J° f!(@)de = limg oo f(x) — f(0+), so that we set our second result. &
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2. Find the transform of the function

where k£ > 1 and is an odd integer.

Solution: This function gives convergence for ¢ > 0. Integration by
parts yields a general recurrence equation:

oo

> kp—ox o
/ Vike 7 dy = — [\/’Te] n ﬁ/ N
0 o 0 20 0

Since k£ > 1, the lower limit can be used in the first term on the right-
hand side (and thus the integral exists). The result can be stated as

L[\/Fk}:E

5L {\/tH} where k > 1 and odd.
S

This yields a sequence of equations, starting with v/£—1, that is obtained
from (13.15). Consequently, we have

L] _ VT 51 3VT
L[] 4 18- -2 -

L{ x’f}: (k+ 1) m .
2kH1(k +1)/2]! Vsk+2

In these general equations, the root of a power of s is always interpreted
as being on the sheet of the Riemann surface on which the values of

Vokt2 are found. &

13.3 Convergence Theorems for Laplace Integrals

13.3.1 Functions of Exponential Order

The Laplace integral is improper by virtue of an infinite limit of integration,
as shown clearly by

0o R
/ f(@)e™*dx = lim f(z)e **dx. (13.17)
0 Ri—oo Jo
This improper integral can be identified with the Laplace transform F'(s) only
when it converges for the values of s in question. Therefore, it is important to
clarify the conditions under which the Laplace integral converges. As a first
step in addressing this issue, we introduce a new class of functions:
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& Functions of exponential order:

A function f(x) is said to be of exponential order «y if there is a real
number ¢« such that

lim f(x)e=** =0 for any a > ap, (13.18)

Tr—00

and with the limit not existing when a < «y.

See Fig. 13.4 for the decaying behavior of a function f(z) of exponential order
a. Note that condition (13.18) is not necessarily satisfied at & = a. The order
number oy may take —oo if f(x) is identically zero beyond some finite value
of x.

0

Fig. 13.4. Decaying behavior of a function f(z) of exponential order a

Examples 1. The function f(x) = x® is of exponential order zero. To see
this, it suffices to check whether or not

lim (e”**z?) (13.19)

Tr— 00

exists. If a > 0, then I’"Hopital’s rule gives

In contrast, when o < 0, (13.19) obviously diverges. Therefore 2 is of
exponential order zero. In a similar manner, it can be shown that z" for
any integer n > 0 is of exponential order zero.

2. The function f(x) = e“* with any real constant c is of exponential order
¢, owing to the fact that
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lim e“e™ ™ =0
T—00

if and only if o > c.

13.3.2 Convergence for Exponential-Order Cases

Suppose f(z) to be of exponential order . Then, we can show that the
Laplace integral

/000 f(x)e *dx (13.20)

converges absolutely whenever the real component of s is located within the
range
Re (s) = 0 > ap. (13.21)

Since absolute convergence implies ordinary convergence, the inequality (13.21)
serves as a sufficient condition for the Laplace integral (13.20) to converge.
This result is formally stated by the theorem below.

& Theorem: (= A sufficient condition for convergence for exponential-
order cases)

If f(z) is of exponential order «gy, then the Laplace integral
I5° f(z)e™*dx converges for

Re (s) > .

(See also Fig. 13.5.)

Proof For any o in the range of (13.21), we can pick a number «; such that
oy <oy <o.
Since f(z) is of exponential order oy, we have

lim f(z)e”** = 0.

r—00

This implies that for any given small € > 0, we can find an appropriate X
such that
|f(z)le”™* < e for any x > X.

Hence, given any small € > 0, there exists an X such that for A, A’ > X,

A’ A
[ u@lean = [ ip@leretoevas

A A

Al
< g/ e~ (0T gy (13.22)
A
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where the last integral in (13.22) converges to a finite value because o > «;.
This means that the leftmost integral in (13.22) can be made to approach
zero by taking X sufficiently large. Thus in view of the Cauchy’s test for
improper integrals given in Sect. 3.4.4, the inequality (13.22) establishes
the absolute (and thus ordinary) convergence of the integral (13.20) in the
region Re (s) > ap. &

Ims

Res
0 a,

Fig. 13.5. Converging region of the Laplace integral of a function of exponential
order apg

Remark. The above theorem provides a sufficient condition for the ordi-
nary convergence of the Laplace integral. Hence, a given Laplace integral
of the function of exponential order «y must converge for Re (s) > ap,
whereas it may or may not converge at Re (s) < ap. For example, f(z) =
cose” gives g = 0, but the corresponding Laplace integral converges for
Re (s) > —1.

13.3.3 Uniform Convergence for Exponential-Order Cases

Next we examine the condition for uniform convergence. Here, uniform con-
vergence means that the improper integral (13.20) as a function of s converges
uniformly to F(s) over the whole defining region of the s-plane. To proceed,
let ao be a number greater than ag and let o be in the range

ap < ag <o (13.23)
For any choice of as, we can find a number a; such that

oy < a1 < ag.
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The relation (13.22) is again valid by use of ay instead of «y, as expressed

by
A A
/ |f(z)le”7%da < 5/ e~(0a2)zy,

A A
Furthermore, by introducing a1, we can extend this inequality to

A’ A
[l <o [ e,

A A
Note that the last integral converges and is independent of o. Therefore, in

view of the Weierstrass test for improper integrals (see Sect. 3.4.4), the
Laplace integral fooo f(x)e **dx converges uniformly for Re (s) > as > ayp.
We have thus proved the following theorem:

#® Theorem: (= A sufficient condition for uniform convergence for
exponential-order cases)

If f(z) is of exponential order «g, then the Laplace integral
Io° f(z)e™*dx converges uniformly to F(s) = L[f(x)] for

Re (s) > aa > .

(See also Fig. 13.6.)

Here, the constant as emphasizes that the converging region guaranteed by
this theorem is closed at the lower end.

Ims

Res
0 a(l aZ

Fig. 13.6. The region of uniform convergence associated with a function of
exponential order ap



13.3 Convergence Theorems for Laplace Integrals 427

Remark. It is important to remember that the above theorem gives only a
sufficient condition for convergence of the Laplace integral. In fact, it is pos-
sible that some functions of exponential order allow their Laplace integrals
to converge uniformly to the left of ay.

13.3.4 Convergence for General Cases

The previous two theorems tell a great deal about convergence of the Laplace
integral for practical functions. On the other hand, for functions that are not
of exponential order (but continuous within the integration interval), the
following slightly different theorem applies.

& Theorem: (= A sufficient condition for convergence for general cases)

If the improper integral

/000 f(z)e **dx

converges for s = s, then it converges for Re (s) > Re (sg) (see also
Fig. 13.7).

Proof The proof requires an auxiliary function

g(z) = / f(r)e *°7dr, (13.24)
Ims
S0g
Res
0

Fig. 13.7. Converging region of the Laplace integral that converges for s = sg
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where f(x) is assumed to satisfy the conditions given above. Since f(z) is
continuous, g(z) is also continuous and thus its derivative is given by

g'(z) = —f(z)e "

In terms of g(z), the Laplace integral can be written as

—S.de — > —SoT —wxd — * / —wl‘d .
/0 f(x)e x /0 f(z)e %% x /0 g (z)e x, (13.25)

where we have set w = s — sg.

We now examine sufficient conditions for the rightmost integral in (13.25)
to converge. Cauchy’s test for improper integrals given in Sect. 3.4.4
says that it converges if and only if for an arbitrary small € > 0, we can find

an X that yields
A
/ g (z)e” " dx

’

<e (13.26)

with A’, A > X. Therefore, our task is to show that the relation (13.26) holds
for Re (s) > Re (s0).
Integration by parts gives us

A A
/ g (x)e % dr = —g(A)e A + g(A)e "4 + w/ g(x)e " dx, (13.27)

!’ 7
which results in

A
/ g (z)e ""dx

A
<l + g e + 12| [ Jgta)ee|da.
(13.28)
From (13.24) and from the hypothesis given in the theorem, it follows that

for an arbitrary small &’ > 0, there exists a number X such that

lg(z)| <& when z > X.
Thus, if A’, A > X we have

lg(AN)]; lg(A)] <&

In addition, if
u = Re (w) > 0,

then the relation (13.28) becomes

A
/ g (z)e " dx

’ w ’
< 5/ |:e—uA + e—uA + u (e—uA _ B_UA):|
u

<é <2 + “;’) . (13.29)
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Observe that the quantity in parentheses in (13.29) is finite for any fixed value
of w with w > 0. Therefore, by making &’ small enough, the quantity

e=¢ (2 + “”') (13.30)

u

becomes arbitrarily small; this can be the ¢ in the relation (13.26). Conse-
quently, the relation (13.26) holds for any v > 0, or equivalently, for any

u = Re (w) = Re (s) — Re (s9) > 0.

This completes the proof of the theorem. (Note that if u = 0, the quantity
in parenthesies in (13.29) diverges, and if v < 0, the inequality (13.29) itself
does not hold.) &

Remark. The theorem is inconclusive for the convergence property on the
line Re(s) = Re(sg) depicted on the complex s-plane. Note that we do not
get convergence when Re (s) = 0¢. This means that even though the integral
converges at a point on the line of Re (s) = oy, it does not necessarily converge
all along the same line. A simple example is given by

0, 0<z <1,

fx) =

1
—x>1.
x

The Laplace integral

o] o0 —iwoT o0 oot
_ e COSWoT . sin wox
/ flx)e °%dx = / dx = / dx — z/ dx
0 1 z 1 z 1 x

converges for sg = 0 + dwy with wy # 0, but diverges at sg = 0.

13.3.5 Uniform Convergence for General Cases

A sufficient condition for uniform convergence is obtained in a similar way
as in Sect. 13.3.4, although it is not the same as that for ordinary conver-
gence. The difference is due to the fact that in the proof above, ¢ defined by
(13.30) is dependent on s through |w| = |s — sp|. In order to get the range of
uniform convergence, we need a certain infinitesimal factor that can be taken
independently of s.

To derive such a factor, let 6 be the angle of w = s — sg, and observe that
u = Re(w) satisfies the relation

|w]

1
cosf|’
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when u > 0. If 0 is restricted to the range

0] < g (13.31)

we can find an angle 6’ that satisfies

T
<0 < =,
oo <2
or equivalently,
|w] 1 1
= <
U cosf — cost’

Inserting this into (13.30), we have

1
e=¢ 2+M <2+ =&,
u cos 0’

where the quantity €” is independent of s and becomes arbitrarily small by
making & small enough. This is true as far as condition (13.31) is satis-
fied; in this context, (13.31) represents the region of uniform convergence
of the Laplace integral. Rewriting 6 by arg(s — s¢), we arrive at the following
theorem:

& Theorem (= A sufficient condition for uniform convergence of the
Laplace integrals for general cases):
If the improper integral

/000 f(z)e **dx

converges for s = s, then it converges uniformly to F'(s) = L[f(x)] for

larg (s — s0)| < 0 < g

(See also Fig. 13.8.)

Here, the 6’ shows the closedness of the converging region. The 6’ can be
arbitrarily close to but not equal /2.
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Ims
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Fig. 13.8. The region of uniform convergence for the Laplace integral that converges
for s = sg

13.3.6 Distinction Between Exponential-Order Cases
and General Cases

We have thus far presented four convergence theorems in connection with
Laplace integrals, where the former two are associated with functions of ex-
ponential order and the latter two are relevant to are more general functions.
The theorems for the two cases are similar to the extent that they all identify
a half-plane of convergence for the Laplace integral. Moreover, the general
cases that we have considered cover a wide class of functions that includes
exponential-order functions as a special case. At first glance, these remarks
appear to imply that each of the former two theorems for exponential-order
cases is a special case of each of the latter for general cases, but, this is not
true at all. Below we give the reasons for this not being so.

First, the theorem for ordinary convergence in the exponential-order case
is intrinsically different from that in the general case. Observe that the for-
mer theorem not only tells us that the Laplace integral converges in a half-
plane; it also gives a specific number (i.e., ag) for the abscissa of a left-hand
boundary of such a half-plane. (Of course 0. < g since it gives a suffi-
cient condition for convergence.) In contrast, the latter theorem merely states
convergence to the right of any point at which we already know that the in-
tegral converges; it gives no information about a boundary of the region of
convergence.

Second, the regions of uniform convergence are specified in a different
manner for the two cases. Whereas the theorem for general cases tells us
only that the Laplace integral converges uniformly in an angular sector of the
right half-plane, the theorem for exponential-order cases indicates uniform
convergence in a less restricted region, namely, a half-plane.

In short, the theorems for the two cases are essentially different. As well,
it should be emphasized again that all the four theorems provide sufficient
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conditions for convergence of the Laplace integrals—not necessary or necessary
and sufficient conditions.

13.3.7 Analytic Property of Laplace Transforms

An important consequence of uniform convergence of the Laplace integral is
the fact that the corresponding Laplace transform,

F(s) = /0 ~ fa)eda, (13.32)

is an analytic function on the complex s-plane. We know that if F(s) is
analytic, it will exist outside the range of convergence of its integral represen-
tation, which can be uniquely determined by analytic continuation. From a
practical viewpoint, the analyticity of F(s) plays a crucial role in evaluating
the Laplace transform of a given function, since we can use it to treat the
complex variable s as if it were real (see Sect. 13.1.3). We close this section
by proving the analyticity of F(s).

& Theorem:
The Laplace transform F(s) is analytic in the region of uniform conver-
gence of the corresponding Laplace integral (13.32).

Proof We first recall that for F(s), there is a region of uniform convergence
in the s-plane and then we perform a contour integration with respect to s
over an arbitrary simple closed path C' in this region. Owing to the uniform
convergence property, the order of integration may be inverted so that we

e f o= [ g (f i) ae o

which gives us zero because Cauchy’s integral formula means that

}{ e **ds = 0.
c

Since the path of C' is arbitrary in the region of uniform convergence, Mor-
era’s theorem establishes that F(s) is analytic inside the region of uniform
convergence of its corresponding Laplace integral. &

13.4 Inverse Laplace Transform

13.4.1 The Two-Sided Laplace Transform

This section describes the inverse Laplace transformation. Intuitively un-
derstood, the inverse Laplace transform L~1[F(s)] of a function F(s) is a



13.4 Inverse Laplace Transform 433

function f(x) whose Laplace transform is F(s). Nevertheless, actual oper-
ations represented by the operator L~! take some time to develop. To set
to the explicit formula for manipulating the inverse transformation, we first
introduce another kind of Laplace transform:

& Two-sided Laplace transform:
If the improper integral

/jo f(z)e **dx (13.33)

exists, it is called the two-sided Laplace transform (or bilateral
Laplace transform), designated by F(s) = L[f(z)].

It is easy to determine the region of convergence of such an integral. Observe
that

0 oo
L[f(s)] :/_ f(x)e‘”dx—}—/o f(z)e **dx. (13.34)

The second integral is an ordinary Laplace integral so that it converges on a
half-plane right to a fixed point denoted by x = o.1. By the change of variable
x = —u the first integral becomes

/_ OOO F@)e " da = /0 ” Fcu)et .

Here, the latter integral is also an ordinary Laplace integral, although s has
been replaced by —s. Hence, its region of convergence is a half-plane left to
a point, say © = 0.. As a result, the common part of the two half-planes,
o1 < Re(s) < 0.9, forms the region of convergence of the integral (13.34) as
depicted in Fig. 13.9.

Remark. Typically, the range of convergence of (13.34) forms a vertical strip
with a finite interval, but may be a right half plane, a left half-plane, the
whole s-plane, a single point, or fail to exist.

Ezample We show that the function 1/(s?+s) can be expressed as a two-sided
Laplace integral. We readily see that

1 1 1

s(s+1) s s+1
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Ims

Oci 0 Ocy

Fig. 13.9. Overlapping region: the region of convergence of the two-sided Laplace
integral

‘We know that )

s+1

1 o0 0
- :/ e dx :/ e**dxr for >0
S 0 —00

the latter and that can be rewritten as

:/ e fe *dx for o> —1 (13.35)
0

and

1 0
5 :/ e **(=1)dx for o <O. (13.36)

From (13.35) and (13.36), we obtain

1 1 1

SG+1) s s+l Z/_Oof(x)e_szdm,

where

—e %, 0<x<oo,
f(x)_{l, —oo < x <0,

which means that 1/(s? + s) = L[f(z)]. The interval of convergence is seen to
be —1 < 0 < 0. example

13.4.2 Inverse of the Two-Sided Laplace Transform

Having introduced the two-sided Laplace transform, we are ready to undertake
the inverse Laplce transformation. We first observe that the two-sided Laplace
transform

Fs) = [ T e da (13.37)
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is identical with the Fourier transform
0 .
Flo+iw) = / fz)e %e ™ %dx
—00

if we regard the real number o as fixed. We use the inverse Fourier trans-
formation to yield

flx)e 7% = QL/ F(o +iw)e™ dw,
™ — 00

or equivalently,

f(x) = ZL / Flo 4 iw)e e dw. (13.38)
T — 00

We then replace ¢ + iw by s, keeping in mind that s should lie on the ver-
tical line with the abscissa Re(s) = o. Then the integral (13.38) can be
regarded as a contour integral along the vertical line Re(s) = o. On this
contour,

ds = idw,
so the integral (13.38) becomes

o+i00
flx) = %/ F(s)e**ds (Re(s) = o is fixed). (13.39)

This result provides a clue for evaluating the explicit form of f(z) from its
two-sided Laplace transform F(s).

The result (13.39) is not yet satisfying. We should recall that f(z) is
not determined uniquely by F(s) through (13.39) unless the location of the
point & = o is specified (see Exercise 3 in Sect. 13.4). If we know in advance
that o lies in the region of convergence of the two-sided integral given by
(13.37), i.e., the strip of convergence, f(z) is uniquely determined by (13.39).
However, if ¢ used in (13.39) is set outside this strip, the integral of (13.39)
is altered quantitatively because the integration contour passes over one or
more singular points of F(s). Thus for us to be able to use equation (13.39),
we must know the region of convergence of the Laplace integral of f(x) before
we can fix the real number o. If only F(s) is given, we will not be able to
locate this region, and not be able to obtain f(x) because we will not know
where to put o. These caveats lead to the following theorem:

& Theorem:
The inverse of the two-sided Laplace transform
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f(z) = /UHOO F(s)e °*ds (Re(s) = o is fixed)

= omi

0 —100

determines f(z) uniquely only if we know where o should be located.

13.4.3 Inverse of the One-Sided Laplace Transform

Let us develop the theory that correspond to the above for the one-sided
transform. We compare the two-sided transform L[f(x)] and its one-sided
counterpart L[f(z)], where f(x) is the same function in both cases and is
defined for all x. From the definitions of the one- and two-sided transforms,
it is evident that

F(s) = LIf(@)] = £If(@)0()]

where 6(z) is the step function. This implies that

o+ic0
f(z)0(x) = ! / F(s)e*ds (o is fixed). (13.40)

2% J oo

Here, o must be to the right of all the singularities of F'(s) in order for the

integral in (13.40) to converge. As a consequence, we have arrived at the
following theorem:

# The inverse Laplace transformation:
If the function F(s) defined by

F(s) = /000 e % f(z)dx

is analytic for Re(s) > o, then f(x) for > 0 is uniquely determined by
1 o+iw
f(z) = lim — e** F(s)ds,

w—00 274 T—iw

where ¢ is arbitrary for all o > 0.

13.4.4 Useful Formula for Inverse Laplace Transformation

In contrast to the situation with the inverse Fourier transformation, the use of
the inverse Laplace transformation formula is less convenient. This is primarily
because the calculation of the complex integral
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o+ico
/ e’ F(s)ds

—100

can be rather complicated. In this subsection, we present a simple and natural
method of computing integrals of this form that is based on the residue
theorem.
Suppose that F(s) is analytic on the domain Re(s) > o.. We wish to
compute
1 o+iw
f(z) = lim —/ e’ F(s)ds, x> 0.

w—o0 271 i

No general method for doing this exists, but it is possible to evaluate this
integral under certain conditions on F(s). Suppose that F(s) is analytic on the
entire complex plane, except at a finite number of singularities sq, s2,--- , sy,
satisfying

Re(sj) <oey, j=1,2,---,n.

Figure 13.10 is a sketch for this situation. Let ¢ > 0. and let R > 0 be a
real number sufficiently large that the left half-circle Cr with center s = o
and radius R encloses all the points s1,s2, - ,s,. Devide Cg into the two
segments:

Ir={seC: s=o0+iw,—R <w< R},

I'rn={seC: |s—o|=R,Re(s) <o}

[ ]
Sl A[R
[ ]
S
0 O¢ g
FR . R
S3

Fig. 13.10. A finite number of singularities s; of F'(s) enclosed by the left half-circle
Cr composed of I'r and Ir
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By the residue theorem,
% e’ F(s)ds = ZRes [e*TF(s); s;5].
Cr =

The right-hand side is independent of R, if R is sufficiently large. From Cr =
I'r U IR, it follows that

7{ e*"F(s)ds z/ esmF(s)ds—I—/ e*"F(s)ds.
Cr I'n Tr

Clearly,
o+iM
lim e**F(s)ds = lim e**F(s)ds.
M—oo Jo_in R—oo J1p
Therefore if, by chance, we have
lim e**F(s)ds =0, (13.41)
R—o0 I'r
then we obtain
1 o+iM n
f(x) = N}liﬂoo i) e**F(s)ds = ; Res[e**F(s); s;].

Unfortunately, condition (13.41) does not hold for every F. The next theorem
presents a sufficient condition on F' under which (13.41) holds true.

& Theorem:
Let F' be an analytic function on the complex plane except at a finite
number of points (if they exist) and let I'g be as above. If

lim max |F(s)| =0,
R—oo sel'r

then

lim e**F(s)ds =0
R—o0 s

holds for every = > 0.

Proof This theorem is a reinterpretation of Jordan’s lemma given in
Sect. 9.24. &

An immediate consequence of this theorem is the following:
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& Theorem:
Let F' be an analytic function on the complex plane except at a finite
number of points s1, 52, - - , sy, satisfying Re(s;) < o for all j. If
lim max |F(s)| =0, (13.42)
R—o seCr

then the inverse Laplace transform of F(s) is given by

f(z) = ZRes [ F(s); s;]. (13.43)

13.4.5 Evaluating Inverse Transformations

Below are several examples of actual evaluations of inverse Laplace transforms
via the residue formula (13.43).

Ezxample 1. Assume a complex-valued function

1

F(s)= ————

(5) s2—3s+2

that has two simple poles s; = 1 and s = 2 We thus choose o = 3 and set
Cr={s: |s—3|=R,Re(s) <3}

in order to make use of equation (13.43). Before doing so, we must check that
condition (13.42) is satisfied. Observe that

max |F(s)| = max
sc€Cr sc€Cr

v
G-DG-2)|
If we let R = |s — 3| go to infinity, then |s — 1] and |s — 2| will also converge

to infinity, so that

1
li —— =0.
Rac 360 |(s — 1)(s — 2)]

Thus (13.43) provides the desired result:

ST sT

(&
= R —_— s =1 R _— - 5 =2
1) es{(s—n(s—zys ]+es[(s_1)(s_2),s
eS.’E es.’L'
2572571 5715:2
:i+ﬁ:_ew+€2x_ &

1-2 2-1
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Remark. The above example can be solved more easily by rewriting F' using
partial fractions F(s) =1/(s—2)—1/(s —1), followed by applying known
equations to get

Ezample 2. It should be cautioned that equation (13.43) is valid only when
the condition (13.42) is satisfied. As a negative example, let us consider the
step function

1, x>c,

9(@:{07 z <c,

with ¢ > 0, whose Laplace transform reads

—CS

F(s) = LIb(@)) = — (s >0),

We would like to derive §(z) from F(s) through the inverse transformation
given by

1 o+iM eSTe—Cs

f(z)=L7'F(s)] = lim ds (0<x#ec).

= 11 —_—
M—o0 271 o—iM S

However, we cannot use (13.43) to obtain f(z), since the function e~ /s does
not satisfy condition (13.42). In fact, if we set s = 0 — R, then

—cs ecRe—ca

> — —
P o0 (R — o0)

max
seCr

S

since ¢ > 0.

Remark. 1f we were to use (13.43) in Example 2, we would obtain a wrong

result. The function e~¢®/s has a single simple pole at s = 0, so

eSZEech

Res[ ;s:O]zl

for each value of . This is, of course, not the step function 6(x).

Ezample 3. Next we consider the inverse Laplace transformation L~1[F(s)] of
the function

Fls) = —— (a>0).

s+ a
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The F(s) has a first-order pole at s = —a. The residue of F(s)e’ at s = —a
reads

Res [F(s)e®®, —a] = lim (s + a)F(s)e®® = lim e = e 7.

S——a S——a

Hence, we have

13.4.6 Inverse Transform of Multivalued Functions

Some caution must be taken when considering the inverse Laplace transform of
multivalued functions. As an example, we consider a multivalued function
F(s) = 1/v/s, and examine its inverse transform given by

1 GSI
flx) = 27Ti/c\/§d87 (13.44)

where the symbol /s represents values of the original double-valued function
s'/2 in the same sheet of the Riemann surface. The function 1//s has a
branch point at s = 0, so among many choices we set its branch cut at
(—00,0].

Since the function 1/1/s approaches zero as |s| — oo, Jordan’s lemma
is applicable. Nevertheless, the problem becomes rather complicated owing to
the presence of the branch cut. To perform the integration of (13.44), we close
the path I' by a circle to the left, bypassing the branch cut in the manner
shown in Fig. 13.11. No singularities are enclosed by the closed curve consising
of C'+ I'+~v+ C”, in which C’ is the vertical line, C” is the pair of parallel

\7
c’ //0
4

Fig. 13.11. Closed loop employed in evaluating the integral (13.44)

—
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horizontal segments, ~ is the small circle of radius 6, and I is a semicircle
from which the infinitesimal gap at the branch cut has been omitted. Hence,

we have
ST

e e e e
ds = 0.
s

der/ der/ ds +
o T e EE T LA o

In the limit R — oo, the integral over I" vanishes and the path C’ reduces to
C as given in (13.44), which implies that

5T ) 1 s

ds = lim —
R—oo 271 C" 4y \/g

f(x) = lim

= 1i —
R—oo 271 C\/g

ds. (13.45)

Thus our remaineing task is to evaluate the last term in (13.45).
Recall that /s is double-valued so that it is discontinuous across the
branch cut. Consequently, on the parallel segments C”,

Vs=1iyp and —i/p with p=|s|,
above and below the branch cut, respectively. On the small circle ~,
V5 = VB2,

where —m < ¢ < 7, and ds = —dp on each of the straight lines. Thus, we have

(9]

L L i [
s = —1i —dp —i—i/ —dp
Criny V'S R—o1 /P 5 VP

—m _(§cos )z i(dsin )z id
il [ ° < dg.
Vil o7

Let 6 go to zero and R approach infinity; then, the first two integrals on
the right-hand side combine into a single integral. The last integral on the
right-hand side approaches zero. As a result, we have

s 0 o—px
lim lim ds = —22’/ dp,
§—0 R—oc0 Jcuin /5 0o P

which implies that

1 [®ere
f@ =1 [ Tl

By substituting pz = u?, the right-hand side becomes

1 /°° e 2 /°° —a?y 1
- —dp=—+ e u=—.
T Jo /P 7T Jo NG



13.4 Inverse Laplace Transform

Eventually, we obtain

o)

which is consistent with the earlier result presented in (13.15).

Exercises

1. Find (a) L7[5/(p+ 2)] and (b) L~1[1/p®] where s > 0.

Solution: (a) Recall that L[e®*] = 1/(p — a); hence L~[1/(p —

a)] = e**. It follows that

1
Lt {pi?] =5L"1 [M] = He 2%,

(b) Recall that
(o)
L[z"] :/ e STahdr = M
0

From this we have

SO

2. Solve the differential equation

443

@)+ f(z) =1 (13.46)

with the initial conditions

using the Laplace transformation.
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Solution: Taking the Laplace transform of both sides of (13.46),
we obtain

L[f"(x)] + L[f ()] = L[1]. (13.47)
Substituting the result

LIf"(2)] = sL[f(2)] = s - f(0) = f'(0) = s*L[f(x)]
and L[1] = 1/s into (13.47) yields
L) + L) = 5,

i.e.,

[ 1—=cosz for x>0,
a 0 for z <0,

which is the solution of the initial value problem originally given
by (13.47). &

3. Derive the two-sided Laplace transform of the following three functions:
—2x

e —e7" >0, o) = e " x>0,
0, xz <0, W=V e, 2 <o,

and
0, x>0,
Jelo) = {6_2”’ —e % x<O.

Solution: The two-sided Laplace transform read, respectively,

1 1
ﬁ[fa(x)]zs+2—s+1 for o0 > —1,

1 1
ﬁ[fb(ﬂf)]zs+2—8+1 for —2<o0< -1,

1 1
ﬁ[fc(x)]:s+27s+1 for o < —2.

Clearly, all the s functions are the same and may be labeled F(s)
(although the region of convergence is different). This implies that
the inverse of a two-sided transform is uniquely determined only
after the location of o is fixed. &
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13.5 Applications in Physics and Engineering

13.5.1 Electric Circuits I

The most familiar applications of Laplace transformations in the physical sci-
ences are encountered in analyses of electric circuits. Consider the RC circuit
depicted in Fig. 13.12. The electric charge ¢(t) deposited in the condenser
with capacitance C' is governed by the equation

Rd%t) + %’5) = (), q(t=0)=0, (13.48)

where R is a resistance and v(t) is the external voltage. We set a rectangular
voltage defined by (see Fig. 13.13)

o(t) = vo x [0(t —a) — O(t —b)] (a<b) (13.49)

with the step function

0, t<a,
e(t_a,):{l, ‘> a

0 a b

Fig. 13.13. The time dependence of a rectangular voltage applied to the RC circuit
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We now want to solve the differential equation (13.48) with respect to g(t).
To do this, we apply the Laplace transform to both sides of (13.48) and make
use of the symbol Q(s) = L[g(t)]. Straightforward calculation yields

“Qs) + Q) _ <6M - ebs> ,

T R s s

where 7 = RC' is called a damping time constant. Hence, we have

Q(s) = v 1 (e““" B e‘bs>

T Rs+711

1 1

= C’UO <5 — 54»7‘1) (6_0'8 _ e—bs)

—a: —bs —as —bs
e " e e e
= Cug — — = + -
S S S+ T S+ T

Then we use the inverse transform to obtain

- Cwp [9(15 ) — Ot —b) — e~ E/T(t — q) 4 e~ ED/Th(4 — b)] ,
0 t<a,
=< cvg [1 - e’(tfa)/T] a<t<hb,

cvg [eb/T — e“/T] e Tt >b.

The explicit time-dependence of the charge ¢(t) given by (13.50) is illustrated
in Fig. 13.14, in which various separations b — a are taken.

08

electric charge q(f)

0.2 1 1 1 J

time ¢

Fig. 13.14. Time dependence of the electric charge ¢(t) described by (13.50), which
is accumulated in the condenser in the RC circuit. The parameter a introduced in
(13.49) is fixed at a = 1.0
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13.5.2 Electric Circuits 11

Next, in order to illustrate the use of convolution integrals in applications
of Laplace transforms, we solve the previous equation (13.48) with respect to
the current i(t) instead of charge g(t). We consider the differential equation

C’/ u)du = v(t), (13.50)

with the rectangular voltage (13.49). The integral term on the left-hand side
in (13.50) is rewritten as a convolution integral:

/ i () dut = / H(W)0(t — w)du = O(t) +i(2), (13.51)
0 0
whose Laplace transform reads

L[6(1) 8(6)) = LIOW)] - Li(0)] = ~1(s).

Hence, applying the Laplace transformation of both sides of (13.50) yields

I(S) Yo —as —bs
RI(s) + e (e7® —e™"), (13.52)
which implies
—as —bs
Vo € — €
I e — = . 1 .
()= 5T (T=RO) (13.53)

current i(t)

time t

Fig. 13.15. Time dependence of the current i(¢) in the RC circuit described by
(13.54). The parameter a introduced in (13.49) is fixed at a = 1.0
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Using the inverse transformaion, we finally set
i(t) = L™ [I(s)]
= 2 [t — a) — et — b))
R
0 t < a,

Vo a/T —t/T
—e%Te a<t<hb,
R <

,UES (ea/T _ eb/‘l’) e—t/‘r t> b.

Figure 13.15 illustrates the time dependence of the current i(t).
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Wavelet Transformation

Abstract Similar to the Fourier and Laplace transforms, a wavelet transform is an
integral transform of a function by using “wavelets.” A wavelet is a mathematical
mold with a finite-length and fast-decaying oscillating waveform, which is used to
divide a given function into different scale components. Wavelet transforms have
certain advantages over conventional Fourier transforms, as they can reveal the
nature of a function in the time and frequency domains simultaneously.

14.1 Continuous Wavelet Analyses

14.1.1 Definition of Wavelet

This short chapter covers the minimum ground for understanding wavelet
analysis. The concept of wavelet originates from the study of signal analysis,
i.e., from the need in certain cases to analyze a signal in the time and frequency
domains simultaneously. The crucial advantage of wavelet analyses is that
they allow us to decompose complicated information contained in a signal
into elementary functions associated with different time scales and different
frequencies and to reconstruct it with high precision and efficiency. In the
following discussions, we first determine what constitutes a wavelet and then
describe how it is used in the transformation of a signal.
The primary question concerns the definition of a wavelet:

& Wavelet:
A wavelet is a real-valued function 1 (¢) having a localized waveform
that satisfies the following criteria:

1. The integral of 1 (t) is zero: / P(t)dt = 0.

2. The square of 9 (t) integrates to unity: / P(t)2dt = 1.
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3. The Fourier transform ¥ (w) of v (t) satisfies the admissibility condi-
tion expressed by

[o'e) 2
Cy = / de < oo. (14.1)
0 w

Here, Cy is called the admissibility constant, whose value depends
on the chosen wavelet.

We restrict our attention to real-valued wavelets, although it is possible to
define complex-valued wavelets as well. Observe that condition 2 above says
that 1 (t) has to deviate from zero at finite intervals of ¢. On the other hand,
condition 1 tells us that any deviation above zero must be canceled out by a
deviation below zero. Hence, 1 (t) must oscillate across the t-axis like a wave.
The following are the most important two examples of wavelets:

Ezamples 1. The Haar wavelet (See Fig. 14.1a):

1
-7 -1 <t<0,
Y(t) = % 0<t<1, (14.2)
0, otherwise.

2. The Mexican hat wavelet (see Fig. 14.1b):

P (1 - LZ) et/ (20%)
t) = ‘ . 14.3
Y(t) NP (14.3)

To form the Mexican hat wavelet (14.3), we start with the Gaussian func-

tion with mean zero and variance o2

@ 10; (b) 1.0
05} 051
g oo L § oo}
-0.5} 0.5
R — 0 1 2 B I— 0 1 2

t t

Fig. 14.1. (a) The Haar wavelet given by (14.2). (b) The Mexican hat wavelet
given by (14.3) with o0 =1
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o—t2/(20%)

V2ro?
If we take the negative of the second derivative of f(¢) with normalization
for satisfying condition 2, we obtain the Mexican hat wavelet (14.3). In the

meantime, we proceed with our argument on the basis of that wavelet by
setting o = 1 and omitting the normalization constant for simplicity.

ft) =

Remark. We know that all the derivatives of the Gaussian function may be
used as wavelets. The most appropriate one many particular case depends on
the application.

14.1.2 The Wavelet Transform

In mathematical terminology, the wavelet transform is known as a con-
volution; more precisely, it is a convolution of the wavelet function with a
signal to be analyzed. In the convolution process, two parameters are involved
that manipulate the function form of the wavelet. The first is the dilatation
parameter denoted by a, which characterizes the dilation and contraction of
the wavelet in the time domain (see Fig. 14.2a). For the Mexican hat wavelet,
it is the distance between the center of the wavelet and its crossing of the time
axis. The second is the translation parameter b, which governs the move-
ment of the wavelet along the time axis (see Fig. 14.2b). With this notation,
shifted and dilated versions of a Mexican hat wavelet are expressed by

(@ 1

Fig. 14.2. Translation (a) and dilatation of a wavelet (b)
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A

where we have set ¢ = 1 in (14.3) and omitted the normalization factor for
simplicity. We are now in a position to define the wavelet transform.

& Wavelet transform:
The wavelet transform 7'(a,b) of a continuous signal x(¢) with respect
to the wavelet ¢ (t) is defined by

oo

T(a,b) = w(a)/

— 00

S <t - b) dt, (14.5)

a

where w(a) is an appropriate weight function.

Typically, w(a) is set to 1/+/a because this choice yields

> 1 t—b 2 o 2 . t—b
[N {\/{Eqb(a)} dt:[w¢(u) du=1 with u:T,

i.e., the normalization condition for the square integral of ¢(¢) remains invari-
ant, which is why we use this value for the rest of this section.
The dilated and shifted wavelet is often written more compactly as

wuat) = =0 (1)),

so that the transform integral may be written as

T(a,b) = / T () as(t)dt. (14.6)

— 00

From here on, we use this notation and refer to v, ;(t) simply as the wavelet.

14.1.3 Correlation Between Wavelet and Signal

Having defined the wavelet and its transform, we are ready to see how the
transform is used as a signal analysis tool. In plain words, the wavelet trans-
form works as a mathematical microscope, where b is the location on the time
series being viewed and a represents the magnification at location b.

Let us look at a simple example evaluating the wavelet transform T'(a, b).
Figures 14.3 and 14.4 show the same sinusoidal waves together with Mexican
hat wavelets of various locations and dilations. In Fig. 14.3a, the wavelet is
located on a segment of the signal on which a positive part of the signal
is fairly coincidental with that of the wavelet. This results in a large positive
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1.0,b)
o

b2

-1 ‘

T (a

-2 T T T 1

Fig. 14.3. (a), (b) Positional relations between the wavelet (thick) and signal
(thin). The wavelet in (a) located at by = 7/2 is in phase with the signal, which
results in a large positive value of T'(a,b) at bi1. The wavelet in (b) located at
by = —m/2 is out of phase with the signal, which yields a large negative value of
T'(b) at bz. (c) The plot of T'(a = 1.0,b) as a function of b

value of T'(a, b) in (14.6). In Fig. 14.3b, the wavelet is moved to a new location
where the wavelet and the signal are out of phase. In this case, the convolution
expressed by (14.6) produces a large negative value of T'(a, b). In between these
two extrema, the value of T'(a, b) decreases from a maximum to a minimum as
shown in Fig. 14.3. The three figures thus clearly demonstrate how the wavelet
transform T'(a,b) depends on the translation parameter b of the wavelet of
interest.
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-6 -4 -2 0 2 4 6

()
t
©
2
g
B
_(lé
.1
S
'—
i "
|
O T T 1
0 2 4 6

Fig. 14.4. Wavelets with a = 0.33 (a) and a = 4.0 (b), in which b = 7/2 is fixed.
The resulting wavelet transform 7'(a,b = 7/2) as a function of a is given in (c)

In a similar way, Fig. 14.4 a—c shows the dependence of T'(a,b) on the
dilatation parameter a. When a is quite small, the positive and negative parts
of the wavelet are all convolved by roughly the same part of the signal x(t),
producing a value of T'(a, b) near zero (see Fig. 14.4a). Likewise, T'(a, b) tends
to zero as a becomes very large (see Fig. 14.4b), since the wavelet covers many
positive and negatively repeating parts of the signal. These latter two results
indicate that when the dilatation parameter a is either very small or very
large compared with the period of the signal, the wavelet transform T'(a,b)
gives near-zero values.

Figure 14.5 shows a contour plot of T'(a,b) vs. a and b for a sinusoidal
signal

x(t) = sint,
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where the Mexican hat wavelet has been used. The light and shadowed regions
indicate positive and negative magnitudes of T'(a,b), respectively. The near-
zero values of T'(a,b) are evident in the plot at both large and small values
of a. In addition, at intermediate values of a, we observe large undulations
in T(a,b) corresponding to the sinusoidal form of the signal. This wavelike
behavior is accounted for by referring back to Figs. 14.3a-b and 14.4a—b,
where wavelets move in and out of phase with the signal.

Therefore, when the wavelet matches the shape of the signal well at a
specific scale and location, the transform value is high. On the other hand, if
the wavelet and the signal do not correlated well, the transform value is low.
Carrying out the process at various signal locations and for various wavelet
scales, we can determine the correlation between the wavelet and the signal.

Remark. In Fig. 14.5, the maxima and minima of the transform occur at an
a scale of one quarter of the period, 7/2, of the sine wave z(t) = sint. This
feature holds in general; correlation between the wavelet v, ;(t) and the signal
x(t) with a period p becomes a maximum at a = p/4.

g (@)

{

4

2

2 0

—2
-4
-6
-8
1 2 3 4 5 6
a

Fig. 14.5. Contour plot of the wavelet transform T'(a, b) of a sinusoidal wave z(t) =
sint

14.1.4 Actual Application of the Wavelet Transform

The wavelet transformation procedure can be applied to signals that have a
more complicated wave form than a simple sinusoidal wave. Figure 14.6 shows
a signal

x(t) = sint + sin 3¢
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B )

6

4

B )

o 0

PRk

N OIE>»

-6

-84 D

1 2 3 4 5 6

a

Fig. 14.6. Wavelet transform T'(a,b) of a complicated signal z(¢) = sin¢ + sin 3t

composed of two sinusoidal waves with different frequencies. The wavelet
transform T'(a,b) of z(t) is plotted in Fig. 14.6. It is clear that the con-
tribution from the wave with the higher-frequency oscillation appears at a
smaller a scale. This clearly demonstrates the ability of the wavelet transform
to decompose the original signal into its separate components.

14.1.5 Inverse Wavelet Transform

Similar to its Fourier counterpart, there is an inverse wavelet transforma-
tion, that enables us to reproduce the original signal z(t) from its wavelet
transform T'(a, b).

& Inverse wavelet transform:
If z € L?(R), then f can be reconstructed by equation

1 [ > da
o) =g [ [ GT@nb0, (14.)
where the equality holds almost everywhere.

The proof of the equation is based on the lemma below.

& Parseval identity for wavelet transform:
Let Ty(a,b),Ty(a,b) be the wavelet transform of f(t),g(t) € L*(R),
respectively, associated with the wavelet v, 5(t). Then we have
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Am§%[:%EMJﬂﬁmw:C@[:f@ﬂﬂWt (14.8)

This identity is derived in Exercise 4. We are now ready to prove the inverse
transformation (14.7).

Proof (of the inverse wavelet transformation):  Assume an arbitrary
real function g(t) € L?(R). It follows from the Parseval identity that

e [~ swatar= [ av [ Gy nm )
—[ [ G <ab>/°o (1)t
/dm{/%/ Ty (a, b)us(t)

Since g(t) is arbitrary, the inverse equation (14.7) follows. &

14.1.6 Noise Reduction Technique

Suppose that the inverse transformation equation (14.7) is rewritten as

x%z—/dﬁ—ﬁwwm>

the integration range with respect to a in an interval [a*,00) with a* > 0.
Then, the result 2*(¢) obtained on the left-hand side deviates from the original
signal z(t) owing to the lack of information for the scale from a = 0 to a = a*.
In applications, this deviation property is made use of as a noise reduction
technique.

By way of a demonstration, Fig. 14.7a illustrates a segment of the signal

x(t) =sint + sin 3t + R(t)

constructed from two sinusoidal waveforms plus a local burst of noise R(t). The
transform plot of the composite signal shows the two constituent waveforms
at scales a1 = /2 and az = 7/6 in addition to a burst of noise around b = 5.0
in a high-frequency region (i.e., small a scale).

Now we try to remove the high-frequency noise component by means of
the following reconstruction procedure. Figure 14.7b shows a reconstruction
of the signal where we artificially set T'(a,b) = 0 for a < a*. In effect, we are
reconstructing the signal using

x@:——/ %/ T(a,b)thap(t),
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.
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§_17 /\
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Fig. 14.7. Noise reduction procedure through wavelet transformation. (a) A sig-
nal z(t) = sint + sin3t + R(¢) with a local burst of noise R(t). (b) The wavelet
transform T'(a,b) of the x(¢). Noise reduction is accomplished through the inverse
transformation of the T'(a,b) by applying an artifical condition of T'(a < a*,b) = 0.
(¢) The reconstructed signal z*(¢) from the noise-reduction procedure

i.e., over a range of scales [a*, 00). The lower integral limit, a*, is the cut-off
scale indicated by the dotted line in Fig. 14.7b. As a result, the high-frequency
noise component evidently reduces in the reconstructed signal as shown in
Fig. 14.7c. This simple noise reduction method is known as scale-dependent
thresholding.

Exercises

1. Show that the Fourier transform of the Haar wavelet satisfies the admissible
condition (14.1).

Solution: The Fourier transform ¥(w) of the Haar wavelet 1)(t)
is given by
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/2 1
W(W) — / e~ Wt — / 72wtdt 7zw/2 sin (w/4)
0 1/2 w/4

Hence, we have

[eS) 2 oo .4
ng/ de:m/ sma()#dw<oo. Iy
0 0

w

2. Prove that the Fourier transform of 1, ;(t) yields ¥, »(w) = /ae~ ¥ (aw).

Solution: It readily follows that

b= [~ et L [~ e ()

Set u = (t — b)/a in the last integral to obtain

Wy p(w) = % /jo e @ty (W) adu = ae P (aw). &

3. Let ¢(t) be a wavelet and ¢(t) be a real, bounded, and integrable function.
Show that the convolution v * ¢ is also a wavelet.

Solution: We first show that 1 * ¢ € L?(R). Observe that

(000 = [ [ wte - wotwad] ’

[/mwtm¢wm¢wmmr

/ wt—u du/ d(u)du'.

The integral f ¢(u')du’ is a constant, denoted by A. Integrate
both sides with respect to t to obtain

| wewra<a [ o [ G u>2dt} du
= A/_O;gb(u)du /_O:qu(t)th = A? /_Z¢(t)2dt < 00,

which clearly indicates that 1 * ¢ € L?(R). Next we show that the
convolution 1 * ¢ satisfies the admissibility condition. In fact,

Ly oy C

o0 2
= / @ sup |P(w)[Pdw < 0.

— 00

These two results implys that the convolution 1 x ¢ is a wavelet. &
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4. Derive the Parseval identity for the wavelet transform (14.8).

Solution: The transform T (a,b) reads
T¢(a,b) = / fF)wr  (t)dt = o F(w)vVae™ "W (aw)dw,
o ’ T J oo

where we used the fact that ¥, ,(w) = ae ¥ (aw). Similarly,
we have T, (a,b) / G(w)vae W (aw)dw. Hence, we have

/0°° %[ dbTy(a,b)Ty(a,b)
- /OOO / db/ duJ/ dw' & e~ WW)F(W)G(W/)&D(aw)u'/(aw')

= % %/_ dw/_ dW'F<W>G(w’)lp(aw)¢/(aw’)6(w+w’)

L " da / dwF (w)G(—w)¥ (aw)¥ (—aw).

Since w( ) and ¢(t) are both real, ¥(—aw) = ¥(aw)* and G(—w) =
G*(w). Thus we have

/ / dbT s (a, )T, (a,b) = 21 /OodwF( )G*()/Ooowf)'?dx
_Cq// f(t)

where & = aw. This completes the proof. &

14.2 Discrete Wavelet Analysis
14.2.1 Discrete Wavelet Transforms

Having discussed the continuous wavelet transform, we move on to its discrete
version, known as the discrete wavelet transform. In many applications,
data are represented by a finite number of values, so it is important and often
useful to consider the discrete version of a wavelet transform. We also can use
an efficient numerical algorithm, called the fast wavelet transform, which
allows us to compute the wavelet transform of the signal and its inverse quite
efficiently.

We begin with the definition of a discrete wavelet. In the previous sec-
tion, the wavelet function was defined at scale a and location b as
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Yap(t) = % (t ; b) ,

in which the values of parameters a and b can change continuously. We now
want to discretize the values of a and b. One possible way to sample a and b
is to use a logarithmic discretization of the a scale and link this to the size of
the steps taken between b locations. This kind of discretization yields

m
1/Jm7n(t) _ 1, . (t ’I”L:LOGO ) 7 (14.9)
Vag R

where the integers m and n control the wavelet dilation and translation
respectively; ag is a specified fixed dilation step parameter and by is the lo-
cation parameter. In the expression (14.9), the size of the translation steps,
Ab = byay, is directly proportional to the wavelet scale, ag’.

Common choices for discrete wavelet parameters ag and by are 1/2 and
1, respectively. This power-of-two logarithmic scaling of the dilation steps is
known as the dyadic grid arrangement. Substituting ap = 1/2 and by = 1
into (14.9), we obtain the dyadic grid wavelet represented by

Ymn(t) = 2779 (27t —n) . (14.10)

Using the dyadic grid wavelet of (14.10), we arrive at the discrete wavelet
transform of a continuous signal z(t):

# Discrete wavelet transform:

g /Oo Z(8) . () dt = /Oo z(t)2™2 (27 —n)dt.  (14.11)

—0o0 —00

Remark. Note that the discrete wavelet transform (14.11) differs from the
discretized approximation of the continuous wavelet transform given by

(oo}

T(a,b) = / h 2(t)yy ,(t)dt ~ Y w(1ALY; (1AL At. (14.12)

> l=—00

In (14.12), the integration variable ¢ is discretized, and a and b are continuous
whose values can be arbitrarily chosen. On the other hand, in the discrete
wavelet transform (14.11), a and b are discretized and ¢ remains continuous.
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14.2.2 Complete Orthonormal Wavelets

The fundamental question is whether the original signal :(¢) can be constructed
from the discrete wavelet transform 7, ,, through the relation

Yo D Tuntmalt). (14.13)

m=—0o0 Nn=—0o0

As intuitively understood, the reconstruction equation (14.13) is justified if
the discretized wavelets ¢, ,(t) are orthonormal and complete. The com-
pleteness of 1, ,(t) implies that any function z € L?(R) can be expanded by

Z Z Cm,nd’m,n(ﬂ (14.14)

m=—00 Nn=—00

with appropriate expansion coefficients c,, ,,. Hence, the orthonormality

o0
/ wm,n(t)'l/}m’,n’ (t)dt = 6m,n5m’,n’ (1415)
—o0
results in ¢, = Thp in (14.14) because
Ton = / T(t)hmn(t)dt = / l Z Z Cont ottt () | Yo (8)dE

=S i / B (b e (1)t

m/—7
§ § Cm’m’(sm,ném’,n' = Cm,n-

m/=—ocon/=—oco

In general, however, the wavelets ¥, ,, () given by (14.9) are neither orthonormal
nor complete. We thus arrive at the following theorem:

& Validity of the inverse transformation formula:

The inverse transformation formula (14.13) is valid only for a limited
class of sets of discrete wavelets {t¢p, »(t)} that is endowed with both or-
thonormality and completeness.

The simplest example of such desired wavelets is the Haar discrete wavelet
presented below.

Ezxamples The Haar discrete wavelet is defined by

Vo () = 2™2(2™t — n),
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where
1 0<t<1/2,
Pty =4 -1 1/2<t<1,
0 otherwise.

This wavelet is known to be orthonormal and complete; its orthonormality is
verified in Exercise 1.

14.2.3 Multiresolution Analysis

We know from Sect. 14.2.2 that in order to use equation (14.13), we must find
an appropriate set of discrete wavelets {1, } that possess both orthonormal-
ity and completeness. In the remainder of this section, we describe a frame-
work for constructing such discrete wavelets that is based on the concept of
multiresolution analysis.

Multiresolution analysis involves a particular class of a set of function
spaces. The greatest peculiarity is that it establishes a nesting structure of
subspaces of L?(R) that allows us to construct a complete orthonormal set of
functions (i.e., an orthonormal basis) for L?(R). The resulting orthonormal
basis is simply the discrete wavelet ., ,(t) that yields the reconstruction
equation (14.13).

& Multiresolution analysis: A multiresolution analysis involves a set
of function spaces that consists of a sequence {V; : j € Z} of closed
subspaces of L?(R). Here the subspaces V; satisfy the following conditions:

e CVaCV_1CVoCViCVy--C LA(R).

Ni=—o Vi = {0}.
f(t) € V; if and only if f(2t) € V;11 for all integers j.

> 2R

. There exists a function ¢(¢) € Vo such that the set {¢(t —n), n € Z}
is an orthonormal basis for V.

The function ¢(t) introduced above is called the scaling function (or father
wavelet). It should be emphasized that the above definition gives no informa-
tion as to the existence of (or the way to construct) the function ¢(t) satisfying
condition 4. However, once we find such a function ¢(t), we can establish a
multiresolution analysis {V;} by defining the function space V, spanned by
the orthonormal basis {¢(t — n), n € Z} and then forming other subspaces
V; (j # 0) successively by using the property denoted in condition 3. If this is
achieved, we say that our scaling function ¢(t) generates the multiresolution
analysis {V;}.
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Remark. There is no straightforward way to construct a scaling function ¢(t)
or, equivalently, a multiresolution analysis {V;}. Nevertheless, many kinds of
scaling functions have been discovered by means of sophisticated mathemat-
ical techniques. Here we omit the details of the derivations and just refer to
the resulting scaling function at need.

Ezamples Consider the space V,, of all functions in L?(R) that are constant
in each interval [27"n,27™(n + 1)] for all n € Z. Obviously, the space V,,
satisfies conditions 1-3 of a multiresolution analysis. Furthermore, it is easy
to see that the set {¢(t —n), n € Z} depicted in Fig. 14.8, which is defined

by
1, 0<t<l,
o(t) = {0, otherwise, (14.16)

satisfies condition 4. Hence, any function f € Vy can be expressed by

oo

f(t) - Z Cn¢(t - n)a

n=—oo

with appropriate constants ¢,. Thus, the spaces V,, consist of the multireso-
lution analysis generated by the scaling function (14.16).

14.2.4 Orthogonal Decomposition

The importance of a multiresolution analysis lies in its ability to construct an
orthonormal basis (i.e., a complete orthonormal set of functions) for L?(R).

6(2i-1)
o(1-1) ] .
I I -1 =12 0 12 1 32 2

t
-2 0 12 1 32 2 $(21)
I I t
(0) 1 2 0 12 1 32 2

I I o (2t+1)
t
-1 =12 0 12 1 372 2 I I .

-1 =12 0 12 1 32 2
o1 P(2t+2)

1., ]

-1 =172 0 12 1 372 2 21 12 0 12 1 32 2

(a) Orthonormal basis for 1/, (b) Orthonormal basis for 1/

Fig. 14.8. Two different sets of functions: Vs and Vi
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In order to prove this statement, we first recall that a multiresolution analysis
{V;} satisfies the relation

VoCV1CV2C-”CL2.
We now define a space W, as the orthogonal complement of V, and V;,
which yields
Vi =Vo ® Wo. (14.17)

The space Wy we have introduced is called the wavelet space of zero order:
the reason for the name is clarified in Sect. 14.2.5. The relation (14.17) extends
to

V2 :Vl @Wl ZVO@Wo@Wl (1418)

or, more generally, it gives
2=V =VoOW, OW, W@ ---, (14.19)

where V) is the initial space spanned by the set of functions {¢(t —n), n €
Z}. Figure 14.9 illustrates the nesting structure of the spaces V; and W; for
different scales j.
Since the scale of the initial space is arbitrary, it can be chosen at a higher
resolution such as
LP=VsaWsoWeD---,

or at a lower resolution such as
L2 :V_g@W_369W—2EB"' )

or even at negative infinity, where (14.19) becomes

Fig. 14.9. Hierarchical structure of the spaces V; and W; as subspaces of L?
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L= oW 1 oWdW @&---. (14.20)

The expression (14.20) is referred to as the orthogonal decomposition of
the L? space and indicates that any function x € L?(R) can be decomposed
into the infinite sum of g; € W;:

z(t) = +g-1(t) + go(t) + 1 (t) + - . (14.21)

14.2.5 Constructing an Orthonormal Basis

Let us further examine the orthogonal property of the wavelet spaces {W;}.
From (14.17) and (14.18), we have

Wo C V1 and Wi C Vs.
In view of the definition of the multiresolution analysis {V;}, it follows that
fit)ycvi <= f(2t) C Vs,

SO
ft) eWy, <= f(2t) e W. (14.22)

Furtheremore, condition 4 in Sect. 14.2.3 results in
fB)eW, <= f(t—n)eW, foranyne Z. (14.23)

The two results (14.22) and (14.23) are ingredients for constructing the or-
thonormal basis of L2?(R) that we are looking for, as demonstrated
below.

We first assume that there exists a function ¢ (¢) that leads to an orthonor-
mal basis {¢)(t —n), n € Z} for the space Wy. Then, if we use the notation

Yon(t) = P(t —n) € W,
it follows from (14.22) and (14.23) that its scaled version defined by
wl,n(t) = \@1/}(% - n)

serves as an orthonormal basis for W;. The term /2 was introduced to keep
the normalization condition

[ O:O Yo (t)?dt = [ ‘:’O Gt = 1.

By repeating the same procedure, we find that the function

Yo (t) = 2™/24p(2t — n) (14.24)
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constitutes an orthonormal basis for the space W,,,. Applying these results to
the expression (14.21), we have for any = € L*(R),

z(t)=-+g-1(t) + go(t) + g1 (t) + -
=+ Z Cfl,n'd}fl,n(t) + Z CO,nwO,n(t) + Z Cl,nwl,n(t) + -

YD ontmald). (14.25)

m=—00 Nn=—0o0

Hence, the family 1, ,(t) represents an orthonormal basis for L*(R). The
above arguments are summarized by the following theorem:

& Theorem:

Let {V;} be a multiresolution analysis and define the space Wy by Wy =
Vi \Wo. If a function t(t) that leads to an orthonormal basis {¢(t —n), n €
Z} for W, is found, then the set of functions {¢y, », m,n € Z} given by

Yo (t) = 2724 (2™t — n)

constitutes an orthonormal basis for L?(R).

Emphasis is placed on the fact that since ¢, (¢) is the orthonormal basis
for L?(R), the coefficients ¢, ,, in (14.25) are identical to the discrete wavelet
transform T, ,, given by (14.11) (see Sect. 14.2.2). Therefore, the function
¥(t) we introduce here is identified with the wavelet in the framework of
continuous and discrete wavelet analysis, such as the Haar and the Mexican
hat wavelets. In this sense, each W,, is referred to as the wavelet space and
the function () is sometimes called the mother wavelet.

14.2.6 Two-Scale Relations

The preceding argument suggests that an orthonormal basis {ty, ,, } for L?(R)
can be constructed by specifying the explicit function form of the mother
wavelet ¢(t). Thus the remaining task is to develop a systematic way of
determining the mother wavelet ¢ (t) that leads to an orthonormal basis
{Y(t —n) n € Z} for the space Wy = V1\Vp contained in a given mul-
tiresolution analysis. We shall see that the (¢) can be found by examin-
ing the properties of the scaling function ¢(t); we should recall that ¢(t)
yields an orthonormal basis {¢(t — n) n € Z} for the space V. (In this
context, the space V; is sometimes referred to as the scaling function
space.)
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In this subsection, we make reference to an important feature of the scal-
ing function ¢(t) called the two-scale relation, which plays a key role in
constructing the mother wavelet 1(t) of a given multiresolution analysis. We
already know that all the functions in V,, are obtained from those in V,
through scaling by 2™. Applying this result to the scaling function denoted
by

don(t) = P(t —n) € Vo,
we find that
mn(t) =2"2p(2"t —n), meZ (14.26)

is an orthonormal basis for V,,. In particular, since ¢ € Vo C Vy and ¢y ,,(t) =
V2¢(2t — n) is an orthonormal basis for Vi, ¢(t) can be expanded by ¢1 ,,(t).
This is formally stated in the following theorem:

& Two-scale relation:
If the scaling function ¢(t) generates a multiresolution analysis {V;}, it
satisfies the recurrence relation:

oo

¢(t)= > Padra(t) =V2 Y pag(2t—n), (14.27)

n=—oo n—=—oo

where

Dn = /jo o(t) o1, (t)dt. (14.28)

This recurrence equation is called the two-scale relation of ¢(t) and the
coefficients p,, are called the scaling function coefficients.

Remark. The two-scale relation is also referred to as the multiresolution
analysis equation, the refinement equation, or the dilation equation,
depending on the context.

Examples Consider again the space V,, of all functions in L?(R) that are
constant on intervals [27n,27"(n + 1)] with n € Z. This multiresolution
analysis is known to be generated by the scaling function ¢(t) of (14.16).
Substituting (14.16) into (14.28), we obtain

1
Po=p1=ﬁ and p, =0 for n #0, 1.

Thus the two-scale relation reads

¢(t) = ¢(2t) + o(2t — 1).
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This means that the scaling function ¢(¢) in this case is a linear combination
of its contracted versions as depicted in Fig. 14.10.

o(t) g(21) (2r-1)
1, = 1 .+ _ 11,
0o 12 1 0 12 1 0o 12 1

Fig. 14.10. Two-scale relation of ¢(t)

14.2.7 Constructing the Mother Wavelet

We are now in a position to determine the mother wavelet (¢) that enables
us to establish an orthonormal basis {¢)(t —n), n € Z} for L?(R). Recall that
a mother wavelet 1(t) = 1o (t) resides in a space W, spanned by the next
subspace of the scaling function Vi, i.e., Wy C V;. Hence, in the same context
as in the previous subsection, ¥ (t) can be represented by a weighted sum of
the shifted scaling function ¢(2t) by

Y(t) = i V202t —n), ne Z. (14.29)

n=—oo

The expansion coefficients ¢,, are called wavelet coefficients and are given
by
G = (=1)"""pn (14.30)

as stated below.

& Theorem:
If {V,,} is a multiresolution analysis with the scaling function ¢(¢), the
mother wavelet 1(t) is given by

V() = V2 i ()" p_,_ 102t —n), neZ, (14.31)

n=—oo

where p,, is the scaling function coefficient of ¢(t).

Remember that p, in (14.31) is uniquely determined by the function form
of the scaling function ¢(t); See (14.28). Thus the above theorem states that
the mother wavelet 1 (t) is obtained once the scaling function ¢(t) of a given
multiresolution analysis is specified.
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Remark. The relation g, = (—1)"p;_, employed in equation (14.31) is one
possible choice for constructing the mother wavelet v (¢) from the father
wavelet ¢(t). In fact, there are alternative choices such as

qn = (_l)npl—n

or
dn = (_1)n_1p2N—1—n

with certain N € Z. Hence, the mother wavelet 1 (t) associated with a given

multiresolution analysis is not unique. In practice, however, any preceding

definition of ¢, can be used to obtain a mother wavelet ¥ (¢) because it leads
to an orthonormal basis for the space Wj.

The proof of equation (14.31) requires the following two lemmas:

& Lemma 1:
The Fourier transform @(w) of the scaling function ¢(t) satisfies

o= (5)2(3).

where M (w) is the generating function of the multiresolution anal-
ysis defined by

1 = :
M(w) = — e " 14.32
with the scaling function coefficient p,, of ¢(t).
& Lemma 2:
The Fourier transform F(w) of any function f € W, can be expressed
by
F(w) = V(w)e/2M* (g + 7r) D (%)) ) (14.33)
where V(w) is a 2m-periodic function, i.e., V(w) = V(w + 2m).

We should keep in mind that V' (w) is the only term on the right-hand side of
(14.33) that depends on f(t); the remainder term e*“/2M*[(w/2) + 7|®(w/2)
is independent of f(t¢). The proofs of the two lemmas are outlined in Exercises
3 and 4. Now we turn to a proof of equation (14.31) for the construction of
the mother wavelet 1 (¢) from the scaling function ¢(t).

Proof (of Theorem): Since the mother wavelet 1(t) gives an orthonormal
basis {¢(t — n), n € Z} for the space Wy, any function f € Wy can be
expressed by

f@)= > hntb(t—n)

n=—oo
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with appropriate coefficients h,,. Its Fourier transform F(w) reads
e .
w) = ( Z hne_m“’> U(w),
n=—oo

where the sum in parentheses is 2w-periodic. Comparing this with (14.33), we
obtain ' w w
U(w) = /2" (5 + 7r> @ (5) . (14.34)

Substituting expression (14.32) into (14.34) yields

zw 2 e
o / Z preinl@/2)+7 g (7)
1 . . w
_ inm i(n+1)(w/2) w
‘ﬂn:z_mp”e e (5)

= % k;oop—k—l(*l)kflefikwm@ (%) [k=—n—1].

Take the inverse Fourier transform of the both sides to find

Z Poje 1 k 1/ —zkw/Q “‘"tQS( )dw

k* 0o
Z Poge 1 k:71/ eiw'(2t7k)t¢(w/)dw/ [w/zw/Q]
k* 0o -
=2 Z pop1 (1) o2t — k).
k=—o

This is our desired result (14.31). &

14.2.8 Multiresolution Representation

Through the discussions thus far, we have obtained an orthonormal basis
consisting of scaling functions ¢, x(t) and wavelets v, ,(t) that span all of
L?(R). Since

L? = Vjo © Wiy ©Wijp11 @ -+,

any function z(t) € L?>(R) can be expanded, e.g.,

Z SJo’k(bJo k(T Z Z k:'(/JJk: (14.35)

k=—o00 k=—00 j=jo

Here, the initial scale jy could be zero or another integer or negative infinity
as in (14.13), where no scaling functions are used. The coefficients T}, are
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identified with the discrete wavelet transform given in (14.11). Often T} in
(14.35) is called the wavelet coefficient and S, is called the approxima-
tion coefficient.

The representation (14.35) can be simplified by using the following no-
tation. We denote the first summation on the right-hand side of (14.35) by

oo
Tjo(t) = D Sjoibion(t)- (14.36)
k=—o0
Equation (14.36) is called the continuous approximation of the signal z(t)
at scale jg. Observe that the continuous approximation approaches x(t) in the
limit of jo — o0, since in this case L? = V... In addition, we introduce the
notation

%)= D Tiwix(t), (14.37)

where z;(¢) is known as the signal detail at scale j. With these conventions,
we can write (14.35) as

o0
2(t) =z, (t) + Y 2(t). (14.38)
J=Jo
Equation (14.38) says that the original continuous signal x(t) is expressed as
a combination of its continuous approximation x;, at an arbitrary scale index
Jjo added to a succession of signal details z;(¢) from scales jo up to infinity.
Also noteworthy is the fact that due to the nested relation of V41 =
V; ® W;, we can write

zj () = 25(8) + 75(0). (14.39)

This indicates that if we add the signal detail at an arbitrary scale (index
j) to the continuous approximation at the same scale, we get the signal ap-
proximation at an increased resolution (i.e., at a smaller scale, index j + 1).
The important relation (14.39) between continuous approximations z;(t) and
signal details z;(t) is called a multiresolution representation.

Exercises

1. Verify the orthonormality of the Haar discrete wavelet ¢, (¢) defined by
Yo (t) = 2™/24H(2t — n), where

1 0<t<1/2,
Pt)=< -1 1/2<t<1,
0 otherwise.
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Solution: First we note that the norm of 1y, ,(x) is unity:

| tmatwPae =2 [ oz )

=2"". Qm/ Vo (w)?du = 1

Thus, we obtain
I'= / Vi (8)Yre,a (t)dt = /OO 27/ 24p(27 Mt — n)2 7N 2p (27Kt — 0)dt
=2 m/2. 2’”/ Y(u)27*2p[2m 7k (u + n) — €dt. (14.40)
If m = k, the integral in the last line in (14.40) reads
| vt n = 0t = Gos = 50

since Y(u) Z0in0<u<land Y(u+n—4¥) #0inl—n<u<
¢ —mn + 1, so that these intervals are disjoint unless n = ¢. Owing
to symmetry if m # k, it suffices to look at the case of m > k. Set
r=m—k # 0 in (14.40) to obtain

27"/2/ P(u)P(2"v + s)du

1/2
— 9r/2 V(2" + s)du — "/’( "o 4 8)dul
0 1/2
which can be simplified as
a b
I=/ w(x)dx—/ Y(z)dx =0, (14.41)

where 2"u+s =z, a = s+2""1, b = s+2". Observe that [s, a] con-
tains the interval [0, 1] of the Haar wavelet ¢(¢), which implies that
the first integral in (14.41) vanishes. Similarly, the second integral
equals zero. We thus conclude that

I= / wm,n(t)wk,édt = 5m,k6n,€7

which means that the Haar discrete wavelet ¢, ,(t) is orthonormal.

&
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2. Let ¢ € L?>(R) and ®(w) be the Fourier transform of ¢(t). Prove that
the system {¢g9, = ¢(t —n), n € Z} is orthonormal if and only if
oo o |@(w+ 2km)[* = 1 almost everywhere.

Solution: It is obvious that the Fourier transform of ¢ (t)
reads @¢ ,(w) = e ""“@P(w). In view of the Parseval identity for
the wavelet transform (14.8), we have

/ Go.n (1) b0 m (1)1 = / $0.0(t)60.mn ()t

= 004500( ) B (@) s = ;W e o (w) d
:i i /2ﬂ(k+1)6_¢(m—n)w [¢Oo(w)]2dw
2 W Sk ’
LT e N 2
=) e k;@ [@0.0(w))” dw.

It thus follows from the completeness of {e=™ n € Z} in
L2(0,27) that [*_ ¢o,n(t)dom(t)dt = 0 if and only if

Z [@o.0(w)]* =1 almost everywhere. &

k=—o00

3. Let &(w) be the Fourier transform of the scaling function ¢(t) and let p,
be its scaling function coefficient. Prove that

@(w)zM(%)@(%) with M (w Z P (14.42)

Solution: Since ¢(t) = V23> p,é(2t —n), we have

=2 Z pn/ ¢(2t —n)e~tdt

_ 3 Z o / S(t)e= = EHN2q (1 = 2t — )
L wera(3) < (3)e(3). 8

4. Let f(t) be a function f € Wy = V1\W, for a given multiresolution analysis
{V;}. Prove that its Fourier transform F'(w) necessarily takes the form



14.2 Discrete Wavelet Analysis 475
F(w) = V(w)e™/2M* (g + w) b (g) : (14.43)

where V(w) = V(w + 2m).

Solution:  Since f € Wy and Vi = Vy & W, it follows that
f € Vi and is orthogonal to V,. Hence, we can write f(t) =
\[ZZO—_OO nP1n(t) = \@ZZO:_OO en®(2t — n), where ¢, =
f f(t)p1 n(t)dt. Take the Fourier transform of both sides to
obtam

F(w) = M; (%)qﬁ(g) with Mj(w) = — i =i,
T (4

Evidently, My (w) is a 2r-periodic function belonging to L%(0, 27).
Since f is orthogonal to Vg, we have [* F(w)®*(w)e™“dw = 0,

SO
00

/ [ Z F(w + 2km)P" (w + 2]€7T)‘| e dw = 0.
T | k=—0c0

Consequently, >-27 _ F(w + 2kn)®* (w + 2kw) = 0. Substituting
(14.42) and (14.44) into this result, we obtain

Z Mf( +k7r>M*< +kw>‘q§< +k7r>‘2:0.

Meanwhile we denote My(w)M*(w) and |(w)|* by My(w) and
&4 (w), respectively. By splitting the sum into even and odd integers
k and then employing the 27-periodicity of M (w) and M(w) [and
thus Ms(w)], we have

Z Mz( +2k7r>452< +2k7r)

k=—0o0

+ Z Mg[ (2k + )7 ]452 [%+(2k+1)7r]

k=—o0

— M, (%) i &, (% + 2kr)

+ Mo (% + w) i &, [% 42k + 1)71]

=—00

7M2( >+M2< +7r> (14.45)
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where we used the orthonormality condition with respect to the set
of scaling functions {¢o 1 (t)}. Finally, replacing w in the last line
in (14.45) by 2w gives

M (w) M*(w + )

Mywtm) Mw) |70 (14.46)

which indicates the linear dependence of two vectors: [M(w), —My
(w+ m)] and [M*(w + 7), M*(w)]. Hence, there exists a function
A(w) such that

Mp(w) = Mw)M* (w + ). (14.47)

Since both M and M are 27 periodic, so is A. Further, substituting
(14.47) into (14.46) yields

Aw) + Aw +m) =0, (14.48)
which means that there exists a function V(w) such that
Aw) = eiwv(w) and V(w) =V (w+2m).

Eventually, the results (14.44), (14.47), and (14.48) lead to the
desired representation (14.43). &

14.3 Fast Wavelet Transformation

14.3.1 Generalized Two-Scale Relations
We know that a signal x(t) € L?(R) can be represented in terms of the
continuous approximation .Sy, , and the discrete wavelet transform 75, ,, by

oo

)= D Smpnbmen®+ D > Tntmn(t),

where
G (t) = 2242t —n) and thy, (1) = 2™/ 2P(2™t — n). (14.49)
[See (14.24) and (14.26).] In principle, both expansion coefficients S, and

T, can be computed through the convolution integral defined by

oo

Snn = [ oO00mnl)dt 0 T = [ 5@t (1450)

— 00 — 00

Actual computations of these integrals are very time-consuming. However,
there is an efficient method for computing S, , and T}, ,, at all m, known as
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the fast wavelet transform. This sophistuated method is based on recursive
equations for S,, , and T,,, and thus is markedly suitable for numerical
computations of wavelet analyses.

To proceed with the argument, we need some preliminary results. We know
that the father wavelet ¢(t) and the mother wavelet ¥ (¢) can be described by
a linear combination of contracted and shifted versions of ¢(t) as follows:

oo

o(t) = V2 Z pe¢(2t — k) and (1) = Z (1) p1_rd(2t — k),

k=—o00 k=—o0
where p,, is the scaling function coefficient of ¢(t). For convenience, we use an

alternative definition ¢, = (—1)"p1_,, of the wavelet coefficient ¢,, instead of
the one used in (14.30). These facts immediately result in

Smn(t) = 2726 (2"t —n) =272 Y7 g [2(27t —n) — K]
k=—o0
_ 2m/2 Z pk2_(m+1)/2¢m+1,2n+k(t)
k=—o00
o0
:271/2 Z pk‘¢m+1,2n+k(t)a (14.51)
k=—c0
and similarly,
Ym,n(t) = 271/2 Z Tk Pm+1,2n+k(1). (14.52)
k=—o0

The expressions (14.51) and (14.52) are generalizations of (14.27) and (14.31)
applicable for ¢(t) and 1 (t).

# Generalized two-scale relations:
Given a multiresolution analysis, @, (t) and 1., ,(t) are obtained from
the set of functions {¢,,+1,2n+%(t); —00 < k < oo} by

o0
Smn(t) =272 3" pedmitantk(t),

k=—o0

wm,n(t) = 271/2 Z Qk¢m+1,2n+k(t)-

k=—oc0
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14.3.2 Decomposition Algorithm

The fast wavelet transform consists of two main parts, called, respectively,
the decomposition algorithm and the reconstruction algorithm, each
of which gives a recursive relation between approximation coefficients S,,
and wavelet coefficients T}, , at neighboring scales. This subsection focuses
on the former algorithm and in the next subsection deals with the latter.

Remark. In the literature about the fast wavelet transform, all of the terms
below mean the same thing:

- discrete wavelet transform

- decomposition/reconstruction algorithm
- fast orthogonal wave transform

- multiresolution algorithm

- pyramid algorithm

- tree algorithm

The decomposition algorithm enables us to obtain S,,, and T),, at all m
smaller than a prescribed scale mg, once S, » is given. To attain our objec-
tive, we first derive a recursive formula for S,, , at two different scales, i.e.,
Sm.n and Sp,41 5. From the expansion (14.49) and from the orthonormality
of ¢ n(t), it follows that

S = /OO Z(t) o (T)dt.

Using the generalized two-scale relation (14.51), we can write

k=—o00

Spm = /OO x(t) [\}ﬁ > Pk¢m+1,2n+k(t)1 dt

55 3w | [ s0smnannia]

k=—o0 -0
1 [eS)
= = Z kam+1,2n+k-
\/ﬁk:foo

Replacing the summation index k with & — 2n, we obtain

1 oo
Sm n— = — nSm y 14.53
, 2 Z Pr—2 +1,k ( )

k=—o0

which provides the approximation coefficients S, ,, from Sy, 11 .
Similarly the wavelet coefficients 7}, , can be found from the approxima-
tion coefficients at the previous scale:
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1 = 1 =
T = 7 k_z_oo Qe Sm+1,2n+k = 7 k_z_oo Qk—2nSm+1,k- (14.54)

As a consequence, if we know the approximation coefficients S,  at a specific
scale mg then, through repeated application of (14.53) and (14.54), we can
generate S, and T, , at all m < mg. This procedure, called the decom-
position algorithm, which is based on (14.53) and (14.54) is the first half of
the fast wavelet transform that allows us to compute the wavelet coefficients
efficiently, rather than computing them laboriously from the convolution of
(14.50).

14.3.3 Reconstruction Algorithm

We can go in the opposite direction and reconstruct Sy, 41, from S, , and
T We already know from (14.39) that x,+1(t) = 2 (t) + 2m(t), and we
can expand this as

xm—i—l(t): Z Sm,n¢m,n(t)+ Z Tm,nwm,n(t)

Furthermore, using (14.51) and (14.52), we can expand this equation in terms

of the scaling function at the previous scale:

oo o0

mm+1(t): Z Sm,n% Z pk¢m+1,2n+k(t)

n=-—o0 k=—o00
oo 1 0
+ Z Tm,ni Z qk¢m+1,2n+k(t)~
n=-—oo \/ék*
= s=—00

Rearranging the summation indices, we get

oo

xm+1(t): Z Sm,ni Z pk72n¢m+1,k(t)

S ke (14.55)
1
+ Tm n- = —2n¥m t -
n;m , \/ikzz—ooqk 2nPmt1,k(1)

We also know that we can expand x,,_1(¢) in terms of the approximation
coefficients at scale m — 1, i.e.,

Tmi1(t) = Z Sm+1,kGm+1,k(). (14.56)

k=—o0

Equating the coefficients in (14.56) with (14.55) yields the reconstruction
algorithm:
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Serl}n: \}5 Z Pn— QkSmk+ Z qn— Qk:Tm ks

where we have swapped the indices £ and n. Hence, at the scale m + 1, the
approximation coefficients S;,41, can be found in terms of a combination
of Sy.n and Ty, , at the next scale, m. The reconstruction algorithm is the
second half of the fast wavelet transform.
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Differential Equations






15

Ordinary Differential Equations

Abstract The main objective of this chapter is to ensure that the reader under-
stands the “existence theorem” (Sect. 15.2.3) and the “unique theorem” (Sect. 15.2.4)
for a first-order ordinary differential equation. These theorems prove the existence
and uniqueness of a solution of the differential equation and delineate the conditions
that should be satisfied by the functions that are to be differentiated.

15.1 Concepts of Solutions

15.1.1 Definition of Ordinary Differential Equations

Many physical laws are often formulated as ordinary differential equa-
tions (ODEs) whose unknowns are functions of a single variable. Below are
basic notation and several important theorems that are used throughout this
chapter. We start with the formal definition of ODEs.

& Ordinary differential equations:
An ordinary differential equation of order n is an equation

F |2,9(@),y'@),- 4™ ()| = 0 (15.)

that is satisfied by the function y(z) and its derivatives
v (x),y"(x),- -,y (z) with respect to a single independent variable z.

Here, the order of a differential equation means the largest positive integer n
for which an nth derivative appears in equation (15.1). For instance, a general
form of the first-order differential equations is given by

Flz, y(z), y'(z)] =0, (15.2)
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where F' is a single-valued function on its arguments in some domain D.
Hereafter we restrict our attention to the case where x is a real number.

Remark.

1. An ODE (15.1) is called a linear ODE if it is linear in the unknown
function y(x) and in all its derivatives; otherwise, it is nonlinear.

2. A linear ODE of order n is said to be homogeneous if it is of the form
an (z)y™ + am — D(z)y™=Y + ..+ a1(2)y’ + ao(x)y = 0, where there is
no term that contains a function of z alone.

3. The term homogeneous may have a totally different meaning specifically
when a linear ODE is first order, which occurs if the ODE is written in

the form p
Y _ (Y
> _F(x) (15.3)

Such equations can be solved in closed form by a change of variables
u = y/x, which transforms the equation into the separable equation

dx du
= m (15.4)

15.1.2 Explicit Solution

Let y = p(z) define y as a function of  on an interval I = (a,b). We say that
the function ¢(z) is an explicit solution or a simple solution of the ODE
(15.1) if it satisfies the equation for every x in I. In mathematical symbols,
this definition reads as follows:

& Explicit solution of an ODE:
A function y = ¢(z) defined on an interval I is a solution of the ODE
(15.1) if

F [z,p(a),¢'(a), - ,¢™(z)| = 0

for every x in I.

Note that a real function should be a correspondence between two sets of real
numbers. In this context, if an equation involving x and y does not define
a real function, then it is not a solution of any ODE even if the equation
formally satisfies the ODE. For example, the equation

y=+—(1+x2) (15.5)

does not define a real function; therefore, it is not a solution of the ODE
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z+yy =0 (15.6)
even though the formal substitution of (15.5) into (15.6) yields an identity.
FEzxzamples 1. The function
y=logz+c¢ z>0
is a solution of ¢y’ =1/x for all z > 0.

2. The function

2 1
y=tanx —x, x# nt

T (n=0,+1,+2,---) (15.7)

is a solution of

y = (z+y)> (15.8)
In fact, the substitution of y into (15.8) gives the identity tan’?z =
(z +tanz — 2)° = tan® z in each of the intervals specified in (15.7).

Remark. Note that the ODE (15.8) is defined for all x, but its solution
(15.7) is not defined for all . Hence, the interval for which the function
given by (15.7) may be a solution of (15.8) is a smaller set of the intervals
in (15.7).

3. The function y = |z| is a solution of
y' =1 in the interval z > 0,
and is also a solution of

y' = —1 in the interval 2 < 0.

Remark. Observe that the function y = |z| is defined for all z, whereas the
corresponding ODEs are defined in only a restricted interval of x, in contrast
to Example 2.

15.1.3 Implicit Solution

It is sometimes not easy (or even impossible) to solve an equation of the form
g(z,y) = 0 for y in terms of x. However, whenever it can be shown that an
implicit function does satisfy a given ODE on an interval I, then the relation
g(x,y) = 0 is called an implicit solution of the ODE. A formal definition is
given below.
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& Implicit solution of an ODE:
A relation g(z,y) = 0 is an implicit solution of an ODE

F |2,y(@), /@), 4" (@)] =0

on an interval I if:

1. There exists a function h(z) defined on I such that g(z,h(z)) = 0 for
every x in I.

2. If F [m, h(z),h (z), - ,h(”)(x)] =0 for every x in I.

Remark. It must be cautioned that g(z,y) = 0 is merely an equation, and it is
thus never a precise solution of an ODE, as only a function can be a solution
of an ODE. What we mean in the above definition is that the function h(x)
defined by the relation g(z,y) = 0 is the solution of the ODE.

FEzxamples The equation

gz, y) =2 +1y* —25=0
is an implicit solution of the ODE

F(z,y,y)=yy' +2=0

on the interval I : =5 < 2 < 5. In fact, the function h(x) = v/25 — 22 defined
on [ yields

Flz, h(z), 1 (z)] = V/25 — 22 <¢25“L_7x2> taz=0

for every z on I.

15.1.4 General and Particular Solutions

We next observe that an ODE in general has many solutions. For example,
the ODE

y =e"
can be solved as
y=¢€"+¢, (15.9)
where ¢ can take any numerical value. Similarly, if
y" =€, (15.10)

then its solution, obtained by integrating three times, is

y =€+ 12’ + cox + c3, (15.11)
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where ¢1, ¢2, c3 can take on any numerical values. Note that both (15.9) and
(15.11) express infinitely many solutions since, which are constants, the ¢’s
can have infinitely many values. Figure 15.1 is a geometrical interpretation of
this point. Each curve corresponds to a solution (15.11) for ¢co = —5,1,4 and
cs = —2,1,3 while ¢; =1 is fixed.

’

(-5.3) (4.3)

Fig. 15.1. Family of the infinitely many solutions (15.11) of the differential equation
(15.10). Solid and dotted curves correspond to c2 = 1 and ¢z = 3, respectively

The two examples above illustrate that solutions of an ODE may often
be represented by a single equation involving an arbitrary constant c. Such
a function involving an arbitary constant is called a general solution (or
complete integral or primitive integral) of an ODE. Geometrically, these
are infinitely many curves, one for each set of values of the ¢’s. If we choose
specific values of the ¢’s, we obtain what is called a particular solution of
that ODE.

Remark. From the examples above, the reader might assume that

(i) an ODE always has infinitely many solutions, or that
(ii) a solution of an nth order ODE always contains n arbitrary constants.

However, these two conjectures are false. For instance,

e The equation (3”)? 4+ y? = 0 has only one solution y = 0 that possesses
no arbitrary constant.
The equation |y'| + 1 = 0 has no solution.
The first-order equation (y" — y)(y' — 2y) = 0 has the solution (y —
c1€%)(y — c2€**) = 0 that has two (not one) arbitrary constants.
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15.1.5 Singular Solution

Consider an ODE of the form

y—xy =f), (15.12)

which is known as a Clairaut equation. We solve it by differentiating both
sides to yield

v f'(y) +a] =0

We thus have two possibilities. If we set y” = 0, then y = ax + b so that
substitution back into the original equation (15.12) gives b = f(a). Thus we
have a general solution:

y = az + f(a),
where a is an arbitrary constant. On the other hand, if we set
F)+a=0, (15.13)

then eliminating y" between (15.13) and the original equation gives us a so-
lution with no arbitrary constant, which is known as a singular solution.
There are various other types of singular solutions, one of which is given below.

Ezamples Suppose the Clairaut equation to be of the form
y=azy' +(y')°
and differentiate both sides to obtain
y'(x+2y') =0.
If we set ¢/ = 0, then the general solution reads
y = cx + (15.14)

with an arbitrary constant ¢. However, if we choose the possibility that 2y’ +
x = 0, then we have
2%+ 4y = 0. (15.15)

Remark. Geometrically, the singular solution (15.14) is an envelope of the
family of integral curves defined by the general solution (15.15), as depicted
in Fig. 15.2. The dotted parabola is the singular solution and the straight
lines tangent to the parabola are the general solution.
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20

10 20

Fig. 15.2. The singular solution (15.14) is an envelope of the family of integral
curves (see Sect. 15.1.6), which are defined by the general solution (15.15)

15.1.6 Integral Curve and Direction Field

Before closing this section, we must emphasize the geometric significance of
a solution of a first-order ODE. In many practical problems, a rough geomet-
rical approximation to a solution may be all that is needed rather then an
evaluation of its explicit functional form. Let

y=f(z) or g(z,y) =0

define a function of & whose derivative y’ exists on an interval I : a < z < b.
Then 3’ gives the direction of the tangent to the curve at each of these points.
Therefore, finding a solution for

y =F(x,y), a<z<b (15.16)

can be reduced to finding a curve on the (z-y)-plane whose slope at each of
its points is given by (15.16). The relevant terminology is given below.

& Integral curve:

If a curve y = f(z) [or g(x,y) = 0] satisfies a first-order ODE (15.16) on
an interval I, then the graph of this function is called an integral curve.
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Obviously, an integral curve is the graph of a function that is a solution of
a first-order ODE (15.16). Therefore, even if we cannot find an elementary
function that is a solution of (15.16), we can draw a small line element at
any point on the (z-y)-plane for which x is in I to represent the slope of an
integral curve. If this line is short enough, the curve itself over that length
resembles the line. These lines are called line elements and an ensemble of
such lines is called a direction field.

Exercises

1. Test whether the relation
zyt —e ¥ —1=0 (15.17)
is an implicit solution of the ODE
(zy® + 22y — 1)y +y* = 0. (15.18)
Solution: If we blindly differentiate both sides to yield
2eyy’ +y* +e VY =0 (2zy+e )y +y7 =0

and then eliminate e~¥ from the final result by using (15.17), we
obtain the ODE (15.18). This implies the possibility that (15.17)
is an implicit solution of the ODE (15.18). The remaining task is,
therefore, to determine the interval I on which we can define such
a function y = h(x) that satisfies the relation (15.17) for every =
on I.

As a first step, we write (15.17) as

1 -y
y==+ +6,
X

which says that y is defined only for = > 0 since e™¥ is always
positive. Hence, the interval for which (15.17) may be a solution
of (15.18) must exclude values of z < 0.

Next, we depict a graph of equation (15.17) on the (a-y)-plane
(see Fig. 15.3). From the graph, we see that there are three choices
for the function y = h(x), each of which gives a one-to-one relation
between z and y. If we choose the upper branch (y > 0), then we
can say that “(15.17) is an implicit solution of (15.18) for all x >
0.” If we choose either of the two lower branches (one is above the
dashed line and the other is below), then we can say that “(15.17)
is an implicit solution of (15.18) only for x > xo ~2.07.” &
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Fig. 15.3. The curve of the function (15.17)

15.2 Existence Theorem for the First-Order ODE

15.2.1 Picard Method
In this section, we consider a first-order ODE of the form
y'(z) = fz,y(x)), (15.19)
where f is some continuous function. Our main purpose is to prove that:
(i) a wide class of equations of the form (15.19) have solutions, and
(ii) solutions to initial value problems
y'(x) = flx,y(x)), ylzo) = yo

are unique. Statements (i) and (ii) are supported by the existence theo-
rem and the uniqueness theorem, respectively, as is demonstrated in the
subsequent subsections.

Our proof of the two theorems is based on that we call Picard’s method,
which gives solutions of an initial value problem

y'(z) = f(xy)), y(xo)=yo, (15.20)

where f (z,y(z) ) is assumed to be continuous and real-valued in a rectangle:
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R: |z —xol <a, ly—yo|l<b (a,b>0). (15.21)

The key to Picard’s method is to replace the differential equation in (15.20)
by the equivalent integral form,

ymﬂzym+/3ﬂuyu»ﬁ, (15.22)

which is an integral equation because the unknown function y(z) ap-
pears in the integrand. That the integral equation (15.22) is equivalent to
the original initial value problem can be checked by differentiating (15.22)
on x.

Remark. Note that the initial condition y(xzg) = yo is automatically included
in (15.22).

We now try to solve (15.22). As a crude approximation to a solution, we take
the constant function ¢g(x) = yo, which clearly satisfies the initial condition

%00(370) = Yo,

whereas it does not satisfy (15.22) in general. Nevertheless, if we substitute
the constant function into f(¢,y(t)) of (15.22), we have

ww=m+/UuWWN@ (15.23)

which is a closer approximation to a solution than ¢o(x). By continuing the
process, we have a sequence of functions {¢,(z)}:

& Successive approximation:
Given an integral equation (15.22) with respect to y(x), a set of functions
defined by

900(515) = Yo,
on@ =10+ [ FEona®)dt (n=12-)  (1524)

is called a successive approximation to a solution of (15.22).

We understand intuitively that taking the limit n — oo yields

pn(z) = o(2),



15.2 Existence Theorem for the First-Order ODE 493

where @(z) is the exact solution of the integral equation (15.22). The
convergence property of the sequence {p;(x)} and the equivalence of
the limit function ¢(z) to the solution of (15.22) are guaranteed if the
integrand f(x,y(z)) satisfies several conditions as is demonstrated in
Sect. 15.2.3.

In summary, we now know the following:

& Picard method:

The differential equation y'(z) = f(z,y(x)) for a given initial value
y(zo) = yo can be solved by starting with ¢g(z) = yo and then computing
successive approximations (15.24). The process converges to a solution of
the differential equation, where f(z,y) satisfies several specific conditions
given in Sect. 15.2.3.

15.2.2 Properties of Successive Approximations

We have previously assumed that f(x,y(z)) is continuous in the rectangle R
defined in (15.21). Hereafter, we further assume that f(x,y(z)) is bounded on
R, which means the existence of a constant M > 0 such that

|f(x,y(z))] < M for all (z,y) € R.

In this case, the successive approximations {@, (z)} show both the continuity
and boundedness property stated below.

& Continuity of successive approximations:
Let f(x,y) be continuous and bounded by |f(z,y)| < M in a rectangle

R: |z —x0| <a, |y—yo| <b (a,b>0).
Then, the successive approximations ¢, (z) are continuous on the interval
. b
I:|z— x| <c=min a 77|

& Boundedness of successive approximations:
Under the same conditions as above, the ¢, (z) satisfy the inequality

lon(x) —yo| < M|z — x|

for all z in I.
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Remark. The condition |f(z,y)| < M has an important geometric meaning
in terms of the direction field. Since y' = f(z,y), the direction field y’ is
bounded as |y'| < M, namely, —M <y’ < M for all points in R. Therefore,
a solution curve (z) that passes through (zg, yo) must lie in the shadowed
region in Fig. 15.4.

Proof (of the continuity). From (15.23), we have

lp1(x) — yo| =

IR0 )dt‘é/ (oo )| dt < Mz — o], (15.25)

0

since o(t) = yo and |f(z,y0)] < M. Now we tentatively assume that the
theorem is true for a function ¢, with n > 1, and then prove inductively
that it is also true for ¢,. By hypothesis, all points (¢, ,—1(t)) for ¢ in I are
located within R. Hence, the function

anl(t) = f(ta (pnfl(t))

exists for ¢ in I, which implies that

x

%(m)zyﬁ/ Fo_1(t)dt

0

exists as a continuous function on I. &

Proof (of the boundedness). Since by hypothesis
[Frn1 ()] = [f (, on-1(t))] < M,

we have

|on(2) = yo| <

/Fn_l(t)dt‘gf |Ey ()] dt < Mlz — ).
o X

0

Therefore, the boundedness of ¢, (x) has been proved by induction. &

y‘)’osz(x_xo)

Yo t+b
¥, taM ( _\
Yo 7 / Yo \
vy, —aM
' y=p)
Yo—b . ;
X,—a X, X, t+a Xo =7 X0 Xy +ar

Fig. 15.4. Continuity and boundedness of a solution curve ¢(z) on the interval
I: |z —zo| < ¢ =min[a, {f]
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15.2.3 Existence Theorem and Lipschitz Condition

Let f(z,y(x)) be a function defined for (x,y) in the rectangle R in the
(z-y)-plane. We would like to verify the existence of solutions for the first-
order ODEs expressed by

y'(z) = flz,y(x))
by imposing a Lipschitz condition:
& Lipschitz condition:

We say that f(z,y(x)) satisfies a Lipschitz condition on a region R if
there exists a constant K > 0 such that

|f (@, y(z)) - f(z, 2(2))| < K [y(z) - 2(z)| (15.26)

for all (z,y), (z,z) € R. Here the positive constant K is called the Lips-
chitz constant.

Our most important theorem is presented below.

& Existence theorem:
Suppose that
1. f(z,y) is continuous and real-valued on the rectangle R.

2. |f(z,y)| < M for all (z,y) in R.
3. f satisfies a Lipshitz condition with constant K in R.

Then the initial value problem
y'(z) = f(z,y(x)), ylxo) =0 (15.27)

has at least one solution y(z) in the interval

I:|z— 20| <c¢=min o
5 o] S Cc= a,M .

Proof Consider the successive approximations {p,(x)} to a solution of the
initial value problem (15.27), wherein f(x,y(z)) is assumed to satisfy the
Lipshitz condition (15.26). We would like to prove that (i) the limit function

p(z) = lim ¢, (z)

n—oo

exists and (ii) that it is the solution of (15.27).
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By definition of ¢, (x), for n > 1, we obtain

[ U ton®) = f onso) 1t

0

(i1 (2) — onla)] <
</ 1 (tron(®)) — F (6 pums (8))] dt
<K [ loult) = pus(0)] dt (15.28)

Set n =1 in (15.28) and substitute it in the result (15.25) to find

|z —w0|2

p2(@) = g1 (o)) < KM

(15.29)
Set n = 2 in (15.28) and use the result of (15.29) in the last term in (15.28).
Continuing the process, we have

|z — x0|™

|§0n(x) - Qpn—l(xﬂ < KnilM nl

(15.30)
Observe that the right-hand side of (15.30) is the nth term of the power series
for eX1z==ol multiplied by M /K. This implies that the infinite series

o(@) + ) [en(@) — pr-1()) (15.31)
k=1

is absolutely (and thus ordinary) convergent, ensuring the existence of the
limit function p(z) = lim, o @n(x). (See Sect. 3.2 for the convergence prop-
erties of Cauchy sequences.)

Next we prove statement (ii) above. Note that the mth partial sum of
(15.31) is just ¢, (x) and that the infinite series (15.31) equals the limit func-
tion ¢(x). Hence, we have from (15.30) and (15.31) that

lo(@) = en(@)] = | Y lpr(@) — pr1(z)]
k=n-+1
3 = & — wol*
< D erl@) —era(@)] <Y K’“*lMTO
k=n+1 k=n+1 !
> k
k—1 c M Kc
< Z K Mﬁ S?ane ,
k=n-+1
where
(Kc)n+1

on = (n+ 1)1
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Since ay, is the nth term of the power series of e”¢, we have lim,,_ o, = 0.
Therefore, the series of functions {¢,(z)} converges uniformly to ¢(z) in
the interval I : x € [xg — ¢, x¢ + ¢], which means that

lim_f (2, n () = f(, p(2)). (15.32)

n—oo

That being so, we can write

p(@) = Im pu(x) = yo+ lim / " F (1 put)) dt

= Yo +/ Jim f(#, @a(1)) dt
= 10 —I—/zf(t,gp(t))dt. (15.33)

By differentiating on x, we have

o) = f(z,0(@), @(x0) =0

These ensure that ¢(x) is a solution of our initial value problem (15.27). &

15.2.4 Uniqueness Theorem

Next we examine the uniqueness of the solution ¢(z) that we found earlier
using the Picard approximation method (see Sect. 15.2.1). This is described
by the theorem below.

& Uniqueness theorem:

Let f(x,y) be continuous and satisfy the Lipschitz condition (15.26) in
the rectangle R. If ¢ and 1 are two solutions of the initial value problem
(15.27) in an interval I containing z, then ¢(x) = ¢(z) for all x in I.

Proof We assume that both ¢(z)and ¢ (z) are solutions of (15.27). For z > z,
we have from (15.33) and the Lipschitz condition (15.26) that

o) = 0] < [ 1110000) = Fit w0
< K/ lo(t) — (t)] dt. (15.34)

This holds in the interval I : x € [zg, 2o + 0] for arbitrary small 6 > 0. Since
|p(z) —(x)| is continuous in I, it has a maximum at some x on I, which we
label pi. Equation (15.34) provides that
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uw<Kplx—xo| < Kpd foral zin I, (15.35)

so we have

(1-Kdé)u<o.

Note that by definition g > 0. Hence, if K§ < 1, we have p = 0, which says
that given any Lipshitz constant K, we can find a sufficiently small § such
that
max |p(x) — ¢(z)| = 0,
i.e.,
lo(x) —(z)| =0 for x € [z, 20 + 9.

Continuing this process yields the conclusion that |p(z) — ¢ (x)| = 0 for all x
in R. The same holds for the case x < x(, completing the proof. &

15.2.5 Remarks on the Two Theorems

1. The existence and uniqueness theorems only ensure the existence and
uniqueness of a solution. They do not tell us whether the solution can or
cannot be expressed in terms of an elementary function form or help us
to find the solution.

2. Arguments for real-valued functions given thus far are straightforwardly
extended to the case that f is complex-valued. In this case we must admit
complex-valued solutions and f must be defined for complex z. The set
of points z satisfying |z — z9| < b becomes a circle with a center zy and
radius b, so domain R is no longer a rectangle.

3. The initial value problem

y'(x) = VIy(@)], y(0)=0,

has two solutions,

22/4 if x >0,
y(z) =0 and y(z) = {—x2?4 <0

although f(z,y) = +/|y| is continuous for all y. The Lipshitz condition is
violated in any region that includes the line y = 0 because for y; = 0 and
positive yo we have

f(x,ye) = fle,y)| Vo2 1
ly2 — 1 TR (V2 > 0) (15.36)

and this can be made as large as we please by choosing y- sufficietly small,
whereas the Lipshitz condition requires that the quotient on the left-hand
side of (15.36) not exceed a fixed constant M.
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Exercises

1. Using the Picard method, evaluate the successive approximation to the
solution of the initial value problem

y'(x) =1+4y(x)*, y(0)=0.

Solution: Set 29 = 0, yo = 0, f(x,y) = 1 +y? in (15.24) to find
that

on () _/OI {1+[30n_1(t)]2}dt_x+/0m [n_1(t)]” dt.

Hence, we obtain

x3
a0

gol(z):x+/ 0dt=uz, gag(m):$+/ tzdt:erg
0 0

(x)—:c—i—/w t—l—ﬁ zdt—x—i—x—B—&—zxf’—l—ix? and so on. &
pald) = | 3 TP Tt et '

Remark. The exact solution of the above problem can be deduced by sepa-
rating variables:

(@) =t S S (i (-5 <z<3)
)=tanzr=24+ —+ —2°+ —z" +--- (= <z<=).

Y 3 15" ' 315 2 2

The first three terms of @s3(x) and of the series above are the same. The
series converges only for |z| < m/2; therefore, all that we can expect is that
our sequence @1, 9, - converges to a function that is the solution of our

problem for |z| < 7/2.

2. By applying the Picard method to
y'(z) = zy(z), y(0)=1, (15.37)
show that the Picard series {¢, (x)} converges absolutely and uniformly.

Solution: The integral equation corresponding to (15.37) becomes

ylz) =1+ /OI ty(t)dt.

The iterative equation is written as ¢o(z) = 0 and

omit(z) =14 /Oz ton (E)dt, (n = 1,2--).
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Thus, we easily find

(x)—l—l—:ﬁ—i-l :ﬁ 2-1— -|-l 22 ’
Prl) =25 T o\ g H\2 ) -

The nature of the convergence is obvious for all real z, since it is
a partial sum for the Taylor series of the function p(z) = e’ /2,
This means that ¢, (z) — ¢(x) asn — oo. &

3. For the equation given by

y'(z) = 2y(x)'/?, y(0) =0,
check the uniqueness of the solution in connection with the Lipschitz condi-
tion.

Solution: This equation has the two solutions y(z) = 0, y(z) =
1622, although f(z,y) = 2(y)'/? is continuous for all 3. The Lips-
chitz condition (15.26) is violated in any region that includes the
line y(z) = 0 because for y; = 0 and yo # 0 we have

|f($,y2) 7f($7y)| _ @ _
ly2 — 1 Y2

-
V)

which diverges for yo — 0, exceeding a fixed constant K. &

15.3 Sturm-—Liouville Problems

15.3.1 Sturm—Liouville Equation

ODEs encountered in physics are often classified as Sturm—Liouville equa-
tions:

& Sturm-Liouville equation:
A Sturm-Liouville equation is a second-order homogeneous linear ODE

of the form

dx dx

where A is a parameter and p, ¢, w are real-valued continuous functions
with p(z) > 0 and w(z) > 0. Here w(x) is called a weight function.

d [p(x)@] + q(z)y + Mw(z)y = 0, (15.38)

Using the Sturm—Liouville operator L defined by

L—_ 1 { d (p(x)jx) + q(x)} (15.39)

w(z) | dx
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we reduce the Sturm-Liouville equation (15.38) to the abbreviated form
Ly(z) = —=\y(x). (15.40)
Ezxamples The Legendre equation
(1—2*)y" =22y +n(n+1)y=0, n>1, z€[-1, 1]

is expressed as

[(1—2%) y’]/ +n(n+ 1)y =0.
This is in the Sturm-Liouville form of p =1 — 22, ¢ =0, w = 1, and A\ =
n(n +1).

Relevant terminology is given below.
& Sturm-Liouville system:
A Sturm-Liouville system consists of a Sturm-Liouville equation

(15.38) on a finite closed interval a < a < b, together with two separated
boundary conditions of the form

y(a) = ay'(a) and y(b) = By'(b)

with «, 8 being real.

A nontrivial solution of a Sturm—Liouville system is called an eigenfunction
and the corresponding A is called an eigenvalue. The set of all eigenvalues
of a Sturm—Liouville system is called the spectrum of the system.

Ezxamples The Sturm-Liouville system consisting of the ODE
y' +dy=0 0<z<n~
with the separated boundary conditions
y(0) =0, y(r) =0

has the eigenfunction

and the eigenvalues

15.3.2 Conversion into a Sturm—Liouville Equation

Mathematically, Sturm—Liouville equations represent only a small fraction of
the second-order differential equations. Nevertheless, any second-order equa-
tion of the form

a(z)y” +b(x)y + c(z)y + Xe(z)y =0



502 15 Ordinary Differential Equations

can be transformed into a Sturm-Liouville equation by multiplying the factor

£(z) = exp UI b(s)a?g(s)ds} : (15.41)

which yields a Sturm-Liouville form,
(€ay')’ + ey + Agey = 0,
with a nonnegative weight function &(z)a(z).
Ezamples We show below that the Hermite equation of the form
y' —2zy +2ay =0 (15.42)

can be transformed into a Sturm-Liouville equation. Substituting a(z) = 1
and b(z) = —2x into (15.41) yields

2

&(x) = exp [/ (2$)ds] =e 7,
by which we multiplying both sides of (15.42), to obtain
—z2 —z2 —z? —z2 ! —?
ety —2zxe " Y + 2ae yz(e y) 4+ 2ae " y =0,

This is the Sturm-Liouville form with

pla) = e, gq(z) = 0, w(z) = e,
and )\ = 2a.

15.3.3 Self-adjoint Operators

We know many facts about Sturm—Liouville problems. Below is an important
concept regarding the nature of these problems.

& Adjoint operator:
The adjoint of an operator L, denoted by LT, is defined by

b b *
/ f*(x)[Lg(x)]p(x)dx={ / g*(x)[wa)]p(x)dx} . (15.43)

Using inner product notation, we can write the definition of the adjoint
operator (15.43) as

(f.Lg) = (g.LTf).
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The most important terminology in this section is given below.

& Self-adjoint operator:
An operator L is called self-adjoint (or Hermitian) if

L=1Lt
or, in inner product notation,

(f,Lg) = (g, Lf)"

It should be noted that an operator is said to be self-adjoint only if certain
boundary conditions are met by the functions f and g on which it acts. An
illusrative example follows:

Examples Let us derive the required boundary conditions for the linear oper-
ator e

 da?
to be self-adjoint over the interval [a,b]. From the definition of self-adjoint
operators, the operator L should satisfy the relation:

b d2 2
/af*dxgdw=</ g dJ; ) : (15.44)

Through integration by parts, the left-hand side gives

%70 b 2 px
/f— - jﬂa+[—gdjx]a+/a L (59

From a comparison as (15.44) and (15.45), it follows that the operator L is

Hermitian provided that
. dg b [ b
dx |, -7 dz |,

15.3.4 Required Boundary Condition

In the example in Sect. 15.3.3, we derived the required boundary condition
for a specific Sturm-Liouville operator to be self-adjoint. For general Sturm-—
Liouville operators, such a required boundary condition is given by the fol-
lowing theorem.
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& Theorem:
A Sturm-Liouville operator is self-adjoint on [a, b] if any two eigenfunc-
tions y; and y; of (15.38) satisfy the boundary condition

lpyiy,]" =o. (15.46)

Proof Tt follows from the explicit form of the Sturm—Liouville operator L that

1t 1t
(vi» Lyj) :_E/ Y; (py})/dx—a/ i qy;de. (15.47)

The first integral is integrated by parts to give
b

Lo b 1 Iy
- lyipy;], + E/a (i) pyjde,

in which the first term vanishes because we have assumed the boundary con-
dition (15.46). Integration by parts then yields

b
[ pys]" — %/ (7)) p) yjde,

S

where the first term is again zero owing to our assumption. As a result, the
sum of integrals I in (15.47) reads

(yi, Ly;) = ;/ab { [ ) p) vy — yfqyj} dx (15.48)

- 1{_/@” v wwl)' = viay; | dx}* — (g5, L), (15.49)

w

which completes the proof. &

15.3.5 Reality of Eigenvalues

& Theorem: For a Sturm-Liouville system under the boundary condition
(15.46), we have:

(a) All eigenvalues are real.

(b) Eigenfunctions corresponding to distinct eigenvalues are orthogonal.
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Proof of (a). If an eigenfunction y,, belongs to the eigenvalue A, then

A:;(ynvyn) = ()\nynvyn) = _(Lynayn)
= 7(yna Lyn) = An(yna yn)-

This indicates that A} = A, since (yn,yn) > 0. Therefore A, is real for all n.
&

Proof of (b). According to the same argument as above,

Am(ymayn) = (Amymvyn) = 7(Lymayn)
= _(yma Lyn) = An(ymayn)-

Thus, for A\, # Ay (Ymsyn) = 0, which means that eigenfunctions corre-
sponding to distinct eigenvalues are orthogonal. &

Remark. If eigenvalues are degenerate, say, A, = A, (m # n), an orthogonal
set of eigenfunctions is constructed using the Gram—Schmidt orthogonal-
ization method. Namely, we can choose the eigenfunctions to be orthogonal
to each other with respect to the weight function w such that if (Y, yn) # 0,
we replace ¥, by ¥, = Yn — aym where a should be chosen to be (Y, §n) = 0.

Exercises

1. Show that the Bessel equation given by

22y +xy + (332 — n2) y=0 with n >0 and 2 € (—o0,0)

can be expressed in the form of a Sturm—Liouville equation.

Solution: After the transformation x — kx, we have

n2
[z (kz)] + <x + k2x) y(kx) =0, n >0,

2z, w = x, and the parameter A = k? in

where p = 2, ¢ = —n

(15.38). &

2. The Bernoulli equation is given as a nonlinear equation by
y' = a(a)y + bz)y", (15.50)

where a(x), b(z) are continuous functions in an interval I and k is an

arbitrary constant.

(a) Show that the transformation u = y'~* provides an inhomogeneous
linear equation for wu.
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(b) Find a solution for the transformed linear equation for u under the
initial condition u(xo) = ug.

Solution:

(a) The transformed equation becomes v’ = (1 — k)a(x)u +
(1 —k)b(x).

(b) The above equation can be reduced to an inhomogeneous
linear equation of the form

u' = p(x)u+q(z),

where p(z) = (1—k)a(z), ¢(x) = (1—k)b(x) are continuous
functions. Let P(z) be a function whose derivative is p(z)
such that

mw=/3wm

0

where x( is a fixed point in 7. Multiplying both sides of
(15.50) by ") to, we have the relation

(ePu) =P (u/ — pu) = ePq.
Therefore, we obtain a solution such that
xT
u(z) = uge F@ 4 e_P(x)/ eP®q(s)ds,
o

where ug comes from the initial condition. o
3. The logistic equation is a special type of Bernoulli equation given by

y' = ay — by?, (15.51)
where a, b are constants. Find a solution for the above by imposing the
initial condition y(zg) = yo.

Solution: Using a solution for Exercise 2(b) by setting k = 2,

we have
a

bt (afyo — b)e o)
Note that y(z) =a/basz —oo. &
4. The Riccati equation is a nonlinear equation given by

y(z)

Y+ p(@)y + qlx)y® = r(z). (15.52)

(a) Assuming u(x) to be a particular solution of the above, namely, a
solution when we set r(xz) = 0, show that z(x) defined by y(z) =
u(x) + z(x) constitutes the Bernoulli equation.

(b) Show that the Riccati equation is reduced to a linear equation of the
second order by the transformation y = Qv’/v.
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Solution:
(a) Substituting y = u + z into the equation,

[2/ + (2% + 2uz) + qz] + [v/ + pu+

The second parenthesis vanishes and we

iouville Problems 507

we have
qu® — 7"] = 0.

have the Bernoulli

equation such that 2’ + (2up + q)z + pz% = 0.

(b) The first order derivative gives

" 12

-ofs-5)

02
Thus, we have

" 12

Qo+ (1Q - 1)Q 5 +(Q +4Q)

Setting @ = 1/p(z), we have v" + (q — %

!
v

!
2+7’:O.
v

)v'+pr1}:0. &
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System of Ordinary Differential Equations

Abstract In this chapter we focus on an autonomous system (Sect. 16.3), which
is a specific type of system of ordinary differential equations. Autonomous systems
can be used to describe the dynamics of the physical objects that are encountered
in physics and engineering problems, wherein the laws governing the motion of the
objects are time-independent, namely, they hold true at all times. The stability of
these dynamical systems is characterized by the critical point (Sect. 16.3.3), whose
nature is revealed by the functional form of the autonomous systems.

16.1 Systems of ODEs

16.1.1 Systems of the First-Order ODEs

This section deals with n coupled ordinary differential equations (ODEs). The
formal definition is stated below.

& Systems of ODEs:
A system of ODEs is given by

Eizsy, s’ o Ty, 0y 7yz(”2);-~}

which involves a set of unknown functions y; (z), y2(z), - - - and their deriva-
tives with respect to a single independent variable x.

For each ith equation of (16.1), we denote the highest order of the derivatives
of y; by r;;. Hereafter, we consider the case of r;; = 1 for all 7 and j, i.e., a
system of n ordinary differential equations (ODEs) of the first order expressed
by
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/

y1<$) = fl(xaylay27"' >yn)7
y2($) = fQ(xvylay27"' 7yn)7

y;(l’) :fQ(xaylay27"' ,yn) (162)
Here, {fx}, k=1,2,--- ,n are single-valued continuous functions in a certain
domain of their arguments and {yz}, & = 1,2,--- ,n are unknown complex

functions of a real variable x.

16.1.2 Column-Vector Notation

For convenience we use column-vector notation for an ordered set of un-
known functions {yx(x)} in which each yi(z) is called a component, which we
denote by a bold-face letter:

y(l’) - [yl(x)a y2($)7 e 7yn($)]T s (163>

where the norm of the vector is defined by

ly@N = (2l + ol + -+ lynl?) . (16.4)
Using vector notation, we can express (16.2) in the concise form
Y (x) = f(z,y(x)), (16.5)
where the column vector f is defined by its components
Flay@) =f1, for o fal " (16.6)

If there exists a set of functions ¢ () = (p1(x), p2(x), -, pn(x)) satisfying

@Z(l‘)l = fi (1‘74101(58)’@2(58)3 e ,(pn(ZE)) ;o i=1,2,---m,

we say ¢(z) is a solution of (16.2). The initial value problem consists of finding
a solution ¢(z) of (16.5) in I satisfying the initial condition ¢(z¢) = y, =
(le, Y20, 7yn0)'

16.1.3 Reducing the Order of ODEs
Let consider an nth order ODE of u(z) given by

d"u(x)
dzm

d"tu(z)

e + -+ pu(z)u(z) = q(z). (16.7)

+ p1()

We show that equation (16.7) can always be reduced to a system of n first-
order differential equations, which is stated as follows:
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& Theorem:
Given an nth-order ODE, it can always be reduced to a system of n
first-order ODEsS.

Proof We take u(x) and its derivatives u/,u”, - ,u("™1) as new unknown
functions defined by
d"tu(z)
yk(w)zw, k=1,2,--- ,n. (16.8)
It is evident that (16.7) is equivalent to the following set of equations:
YI=Y2, Yo=Yz s Y1 =Yn (16.9)
and
Yp, = —P1Yn — D2Yn—1 — - — Pl + . (16.10)
Equations (16.9) and (16.10) can be written in a brief vector form as
dy(x)
= »Y), 16.11
) () (16.11)

where the column vectors are defined as
Y= (Y1,Y2, " »Yn)
and
f=7(y)
= [y2: Y3, s Yns —P1Un —P2Yn-1— - —Puy1 +q .

Ezample One of the most famous systems of the type (16.11) results from the
equation of motion for a particle of mass m. For a mobile particle along the
z-axis, the equation of motion is

i <t,:1:(t), dm(t)) : (16.12)

dt? dt

where ¢ is the time and F' represents the force acting on the particle. To see
how the second-order ODE (16.12) can be viewed as a system of the form
(16.11), we make the following substitutions:

dx
dt

Then (16.12) is equivalent to a system of two equations:

t—z, x—y, — Y.
yi:y%
y’=iF(my Y2)

2 m s Y1, 92)

which is of the form of y'(x) = f(z,y).
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16.1.4 Lipschitz Condition in Vector Spaces

The vector equation

Y () = f(z,y) (16.13)
is obviously analogous to the scalar equation

Y (x) = f(x,y).

This analogy implies the possibility that the definition of a Lipschitz condi-
tion can be extended to the vector equation. The extended Lipshitz condition
provides a simple sufficient condition for the uniqueness and existence of so-
lutions, which implies that all the theorems for the scalar equation can be
generalized so as to hold for the vector equation.

& Lipschitz condition for a vector function:
A vector function f(z,y) in (16.13) is said to satisfy the Lipschitz
condition on a region R if and only if

|f (z,y(z)) — f (z,2(z))| < K |y(z) — z(z)|,
(R: |z —mo| <a, |[y—yol <b, |z—20| <Db). (16.14)

for the Lipschitz constant K.

When f(z,y) satisfies the Lipschitz condition noted above, we see from (16.14)
that

|fk(m>ylay21 T 7y’n) - fk(xazlaz27' o 7ZTL)|
S K(lyr =zl +ly2 — 2[4+ +lyn — 2al) (F=1,2,---,n).(16.15)
Using this, we can prove the theorem of the existence and uniqueness of so-
lutions for the general vector equation (16.13). For instance, the uniqueness

of the solution for (16.13) is straightforward as shown below. The right-hand
side of (16.15) yields

KY lye() = zn(@)] < KZ Ifk z,y(x)) — fulz, 2(2))| dx
k=1

gnKQ/ Zm — 2 ()|dz, (16.16)

0 k=1

which holds for the interval I; x € [xg, z¢ + d] for any small §. Since the left-
hand side of (16.16) is continuous on I, it has a maximum at some x, which
we label p. Then, the inequality (16.16) becomes

w < nKu(x —x9) < nKpd,
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which gives us u(1 — nKJ§) < 0. For any small § > 0, we have u = 0, which
indicates that > |yx — zx| = 0. The same holds true for the case x < . Thus,
the solution of (16.13) is unique.

Exercises

1. Consider a initial value problem given by

y/ = f(l'7y), y(xO) =Y
defined on R : |z — xo| < a, |y — yp| < b, (a,b > 0). Assuming that f is

continuous on R, a sequence of successive approximations ¢, ¢, is
given by

o) =y
and

€T
errle) =wot [ Fltpu)dt for n=12.
o
Using this procedure, find a sequence of successive approximations for

(W1, y5) = (y2, —y1), for y(0) = (0,1).

Solution: Here f(z,y) = (y2,—vy1), so we have
po(z) = (0,1),
T
pr(z) = (07 1) +/ (170)dt = (z, 1)’
0

@, (x) = (0,1) —i—/ow(l,—t)dt— (0,1) + <x—x;) = <x,1 - "”j) .

Continuing with this process, we find the solution of the problem as
pr(x) — @(r) = (sinx,cosx). &

16.2 Linear System of ODEs

16.2.1 Basic Terminology

We now focus on a particular class of systems of ODEs called a linear system
of first-order ODEs, described by

Jj=1
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dys(z) &
de Z‘I?j(m)yj(x) = q2(x),
j=1
dyn(r) <
“dr D i (@)y; () = gn ().
7j=1
Here ay;(r) and g(r) with j,k = 1,2,---,n are continuous functions

on x on some interval I. For convenience we use the vector representation
given by

dy(z
YE)  A@)y(e) = ale), (1617
where A = [ay;] is an n x n matrix. Therefore, Ay stands for the matrix

A applied to the column vector y = [y1,¥y2, " ,Yn]’, namely, the linear
transform of y by A. The vector q is defined as q = [q1, g2, ,qn]T. Given
any y(zo) for z¢ in I, there exists a unique solution ¢(x) on I such that
@ (x0) = [y1(x0),y2(z0), -+, yn(w0)]".

The use of the linear operator L to (16.17) yields

Ly(z)] = q(x),

where the L is defined as p
L=——A. 16.18
e ( )

If g(z) = 0 for all  on I, (16.17) is said to be a linear homogeneous
system of nth order, expressed by

dy(x)
dx

— A(z)y(x) = 0. (16.19)

Otherwise, (16.17) is called inhomogeneous. A homogeneous system ob-
tained from the inhomogeneous system (16.17) by setting g(z) = 0 is called
the reduced or complementary system.

Remark. Note that every linear homogeneous system always has a trivial
solution ¢(z) = 0, as can be immediately checked. From the uniqueness of
the solution, therefore, there is no solution vanishing at only some point of x.

16.2.2 Vector Space of Solutions

Let ¢;(z) (i = 1,2,---) be solutions for an n-dimensional linear homogeneous
System

y/(2) = Alx)y(a). (16.20)

Referring to the axioms given in Sect. 4.2.1, it readily follows that the solutions
{p,;(x)} form a vector space V. Indeed, if ¢, (x) and ¢p4(z) are solutions of
(16.20), then c1 ¢, (x)+catp,(x) with arbitrary constants ¢y, ¢ is also a solution
of (16.20), and so on.
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Now we pose a question as to the dimension of the vector space V men-
tioned above. We have the answer in the following theorem:

& Theorem:
Solutions of the system (16.20) on an interval I form an n-dimensional
vector space if the n X n matrix A(z) is continuous on 1.

Proof The continuity of A(z) implies that all its components do not diverge.
This allows us to set a constant K,

K= maxz la;; ()],
i=1

and it then follows that the vector f defined by f(x) = A(z)y(x) satisfies the
Lipschitz condition:

|f(z,y) — f(z,2)| < K|y —2| forxzel.

From the existence and uniqueness theorems we know that there are n solu-
tions ;(z) of (16.20) such that each solution exists on the entire interval I
and satisfies the initial condition

p;(xg)=€; (1=1,2,--- ,n) forazgel, (16.21)

where the e}s are n linearly independent vectors.
We tentatively assume that the solutions ¢, are linearly dependent on I.
Then there exist constants ¢;, not all zero, such that

Z cip;(x) =0 for every x on I.
i=1

In particular, setting x = x, and using the initial condition (16.21), we have

n
E Ci€; = 0,
i=1

which contradicts the assumed linear independence of e;. Hence, we conclude
that the solutions ¢, are linearly independent on I.

Next we prove the completeness of {¢,(x)}; i.e., that every solution (x) of
(16.20) can be expanded as a linear combination of ¢, (z) satisfying the initial
condition (16.21). Since the e; are linearly independent in the n-dimensional
Euclidean space E,,, they form a basis for F,, and there exist unique constants
b; such that the constant vector ¥ (xp) can be expressed as

Y(xo) = Zbiei- (16.22)
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Consider the vector

o) = 3 bipi(a),

where the b; are identical to those in (16.22). Clearly ¢(z) is a solution of
(16.20) on I. In addition, the initial value of ¢ reads

@(x0) =Y bies,
i=1

so that ¢(xg) = ¥(xg). In view of the uniqueness theorem, we have
p(x) =1(x) for every x on I.

This leads to the conclusion that every solution ¥ (z) of an nth-order linear
homogeneous system (16.20) is expressed by the unique linear combination

P(x) = Zbicpi(x) for every z on I,
i=1

where the b; are uniquely determined once we have ¥ (x). As a result, n
solutions ¢, () of the system (16.20) form the basis for an n-dimensional
vector space. o

16.2.3 Fundamental Systems of Solutions

Again let @, (z) = [p1i(x),  ,oni(2)]* (i = 1,2,--- ,n) be solutions of the
linear homogeneous system (16.20) such that

‘Pi(f)/ =A(z)p,(z) foralli=1,2,--- n.

Note here that {¢,(xz)} may or may not be linearly independent, since no
initial condition is imposed (contrary to the case of (16.21)). Specifically, if
the set {p,(x)} is endowed with the linear independence property, it is called
the fundamental system of solutions of (16.20).

#& Fundamental system of solutions:

A collection of n solutions {;(z)} of an n-dimensional lienar homoge-
neous system is called a fundamental system of solutions of the system
if it is linearly independent.

Remark. The significance of a fundamental system of solutions lies in the fact
that it can describe any solution ¢(z) of the corresponding linear homoge-
neous system. Consequently, the problem of finding a solution ¢(z) becomes
equivalent to that of finding n linearly independent solutions.
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With this terminology, the theorem presented in Sect. 16.2.2 leads to the
following result:

& Theorem:
A fundamental system of solutions exists for an arbitrary linear homo-
geneous system.

FEzample The second-order equation
y'(t) +y(t) =0 (16.23)
is equivalent to the two-dimensional linear system

u'(t) = Au(t) (16.24)

wo=[] maa=(55)

The fundamental system of solutions of (16.24) is given by

with

@, (t) = [cost, —sint]T and ¢, (t) = [sint,cost]T,

whose linear independence follows from the fact that c¢isint 4+ cpcost = 0
implies ¢; = ¢o = 0. Furthermore, ¢,(0) = (1,0) and ¢,(0) = (0,1), so any
solution ¢(t) is given by

p(t) = app (t) + bopy(t) for —oo <t < oo, (16.25)
where ¢(0) = (ag, bo).

Remark. The solution ¢(t) in (16.25) corresponds to the solution of the
second-order ODE (16.23) satisfying the initial conditions: y(0) = ag and

y’(O) = bo.

16.2.4 Wronskian for a System of ODEs

The theorems given in Sect. 16.2.2 and 16.2.3 ensure the existence of a fun-
damental system of solutions for any linear homogeneous system of the form

y'(z) = A(z)y(x). (16.26)
However, it provides no information as to whether a certain set of solutions
is a fundamental system or not. In what follows, we consider the criteria
concerning this issue. Following are preliminary concepts that we need in
order to proceed.
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& Wronsky determinant:
Let {p(2)} (K = 1,2,--- ,n) be solutions of (16.26), where ¢, (x) =
[01k(), -, nk(x)]T. Then the scalar function

Y11 P12 " Pin
P21 P22 - Pan

W(z) = det (16.27)

Pn1 Pn2 *°° Pnn

is called the Wronsky determinant (or the Wronskian) of the solutions

{or(2)}-

If {p,(z)} is a fundamental system of solutions of (16.26), then the matrix
corresponding to W (x) is called a fundamental matrix. Hence, a fundamen-
tal matrix is a matrix whose columns form a fundamental system of solutions

of (16.26).

Ezxample For the two-dimensional system given in Sect. 16.2.3, the matrix

cost sint
o(t) = (—sint cost) ) TO0<E<00

is a fundamental matrix and W (t) = 1 for all ¢.

16.2.5 Liouville Formula for a Wronskian

The following theorem shows that given any n solutions of (16.26) and any tg
in (r1,72), we can completely determine the corresponding Wronskian without
computing the n x n determinant.

# Liouville formula:
Let {¢,(z)} (k=1,2,--- ,n) be any n solution of (16.26) and let zo be
in (r1,7r2). Then the Wronskian of {¢,(z)} for x € (r1,72) is given by

W (x) = W(xo) exp [/: trA(s)ds} .

0

See Exercise 2 for the proof. Since exp [f;) trA(s)ds} is never zero, the

theorem implies that the Wronskian of any collection of n solutions of (16.26)
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is identically zero or never zero on (ri,rs). The latter case characterizes a
fundamental system, as shown by the following theorem:

& Theorem:

A necessary and sufficient condition for {p.(z)} (¢ = 1,2,---,n) to
be a fundamental system of solutions of (16.26) is that W(x) # 0 for
r <x <ro.

Proof Let {¢(z)} (k=1,2,---,n) be a fundamental system of solutions of
(16.26) and let ¢p(x) be any nontrivial solution. Then there exist c1,--- , ¢y
not all zero such that ¢(z) = Y I, ¢;ip;(x), and by the uniqueness of the
solutions the ¢; are unique. If ¢ = [c1,- -+, ¢,|T and @(z) is the fundamental
matrix of {¢;(x)}, then the previous relation can be written as

() = cb(a).

For any x in (r1,72), this is a system of n linear equations in the unknowns
c1,- -+ ,Cp. Since this has a unique solution in ¢, det® cannot be zero, i.e.,

det®(z) = W(x) #0 for any x € (r1,r2).

Conversely, W(z) # 0 for 11 < x < ro, implies that the columns
p(z), -+ ,p,(z) of &(x) are linearly independent for r; < = < ry. Since
they are solutions of (16.26), they form a fundamental system ofsolutions. &

16.2.6 Wronskian for an nth-Order Linear ODE

The previous results for systems of ODEs can be applied to an nth-order
linear equation

u™ () + aq (2)u™ "V (2) + - 4 an(z)u(z) = 0, (16.28)

since (16.28) is transformed into a vector form as

y = Ay, (16.29)
where
U 0 1 0 0
o 0 0 1 0
y= e and A =
- 0 0 1
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Relevant terminology and theorems are given below.

& Fundamental system of solutions:
A collection

51(517)7"‘ agn(m)7 <z <T2

of solutions of (16.28) is called a fundamental system of solutions of
(16.28) if it is linearly independent.

& Theorem:
A fundamental system of solutions of equation (16.28) exists.

Proof We know that a fundamental system of solutions of (16.29) exists, and

we express it by ¢ (z),---, ¢, (z), where @y (x) = [pix(z), -, pur(@)]".
Furthermore, we may assume that given zg in (r1,72),

Sok(xo): [07 5051707"' 7O]T:ek7 k:1727 ) 1,

where the single nonzero component 1 in ey, is assigned to the kth place in the
square brackets. By the correspondence of solutions of (16.28) and (16.29), we
have

pule) = [6(a), (@), V)]

for some solution u(z) = &(z) of (16.28). The collection & (x),--- , &y (x)
comprises distinct nontrivial solutions, since they satisfy distinct initial con-
ditions and & = 0 for 1y < # < ro would imply that ¢, (z) = 0, which is
impossible.

Finally, if there existed constants ¢y, - - - , ¢, not all zero such that ZZ=1 Ck
&p(z) =0 for r1 < < ro, then
n
1
PRAGE Zc & (e r << Ty
k=1

This implies that

ch‘Pk(x) =0, r <z<ry,

which contradicts the fact that {¢,(z)} is a fundamental system of (16.29).
&

We now define the Wronskian of a collection of n solutions of (16.28).
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& Wronsky determinant:
Given any collection & (z),- -+ ,&,(2) of solutions of (16.28), then

&1 & - &
g & - &
W (x) = det e (16.30)
(n=1) o(n-1)  p(n=D)
1 2 n

is called the Wronsky determinant (or the Wronskian) of the solutions

{flc(x)} (k =12, 7”)'

As before, if & (z),- -+, & (z) make up a fundamental system of (16.28), then
the matrix corresponding to W(z) is called a fundamental matrix. In
any case, note that the columns of the matrix corresponding to W(x) are
n solutions of the system (16.29). We may therefore immediately state a
result analogous to the Liouville formula given in Sect. 16.2.4, noting that
trA(x) = —ay(x):

& Theorem:
The Wronskian W (x) of any collection & (z),- - ,&,(z) of solutions of
(16.28) satisfies the relation

W (z) = W(xg) exp [— /: al(s)ds] , T <Zg, T < Ta.

0

Finally, we have the result corresponding to the theorem in Sect. 16.2.4, for
which the proof is virtually the same.

& Theorem:
A necessary and sufficient condition for & (z),- - ,&,(z) to be a funda-
mental system of solutions of equation (16.28) is that

Wi(z)#0 forr <z <rs.

Ezample Assume a second-order equation

y'(x) + a(z)y(x) = 0.
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For any two solutions & (z) and &;(x), we have

_ G(x) &)\ _
W(x) = det (fi (@) £’2(m)) = const.

The constant is nonzero if and only if £&; and & are linearly independent.

Remark. The fact that linear independence implies a nonvanishing Wronskian
is a property of solutions of linear equations; i.e., it does not hold for nonlinear
equations. To see this, we consider the functions & (z) = 2 and & (z) = |23
They are linearly independent on —oco < & < 0o, but

23 |z
This results from the fact that &;(x) and £3(z) cannot both be solutions near

x = 0 of a second-order linear equation. In fact, they both satisfy £(0) =
£'(0) = 0 yet are distinct, which violates uniqueness.

16.2.7 Particular Solution of an Inhomogeneous System

We close this section by discussing an inhomogeneous linear equation

dy(x
W) Aayy(a) = a(a). (1631)
x
Let g(x) be continuous on = on some interval I and let {¢,.} (k=1,2,--- ,n)

be a fundamental system of solutions for the reduced equation of (16.31). A
general solution of (16.31) can be written as the sum

Y(x) = ¢, (7) + 11 () + - + enpy, (2), (16.32)

where ¢, (7) is a particular solution of (16.31) with no adjustable parame-
ter.

A particular solution can be obtained from a fundamental system {¢}}
(k=1,2,---n) of the reduced equation (16.19) by means of the method of
variation of constant parameters. We assume a particular solution of the
form

pp(x) = Cr(x)py(z) + - + Cu(@)p, (2), (16.33)

where the coefficients {Cy(z)} (k = 1,2,--- ,n) are not constants, but un-
known functions of x. Differentiating (16.33) on 2 and substituting it into
(16.31), we obtain

n

Y [Cr@)gi(x) + Ci(a)ey (@) — Cr(2) Ax)pr ()] = a(x). (16.34)
k=1
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Since {p,} (k = 1,2,--- ,n) are solutions of the reduced equation (16.19),
equation (16.34) yields

3 e(@)Ci(a) = q(a). (16.35)
k=1

If we express ¢, (z) by its components as

er(®) = [pr1 (), pra (), - rn(2)]

equation (16.35) becomes

> i (@)Ch(x) = qi(x), (16.36)
j=1
or equivalently,
Y11 P12 0 Pl Ci(x) q1 ()
P21 P22 Pan Cy(x) ()
' = . (16.37)
Pni1 SDnQ Sonn C;L(I) q’:L(‘T)

The matrix [pg;] on the left-hand side of (16.37) satisfies det[ypy;] # 0 be-
cause of the linear independence of the fundamental system of solutions {¢, }.
Hence, multiplying the inverse matrix (see Sect. 18.1.7) of [¢y;] by the both
sides of (16.37), we have

Cl(x) = pr(a), (16.38)
where {pp(x)}, k = 1,2,---,n are continuous functions obtained from
(16.37). Thus once the differential equation (16.38) is solved with respect
to Ck(x), the solutions determine a particular solution of the form

e,(0) = 3 Cilw)py (@),
k=1

Exercises

1. Suppose p1(x), p2(x) to be two solutions of the ODE ¢’ 4+ a1y’ + asy =0
on an interval I containing a point zy. Show that

W (1, 02)(x) = e E2W (01, 02) (o).

Solution: We have 1" +a191” +az¢p1 = 0 and 2" +a1p2” +asps =
0. Multiplying the first equation by —s, and the second by ¢; and
adding we obtain

(12" — 01" p2) + a1 (P12 — 1" p2) = 0.
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Note that W = o1’ — p1'p2 and W’ = @195" — 1" ps. Thus W
satisfies the first-order equation:

W, + (11W = 0,

which implies W (z) = ce”*'® in which ¢ is some constant. Setting
x = xg, we have ¢ = e~ %W (x(), and thus

W(z) = e 1@ (z,). &

2. Assume an n-dimensional linear homogeneous system y'(z) = A(x)y(x)

on I = (a,b), and let {g,(x)} be any n solution. Show that the Wronskian
of {g,(x)} is given by

T

W (z) = W(xo) exp [/x trA(s)ds} , where a < zg < b, (16.39)

0

which is called the Liouville formula.

Solution: We show that W (z) satisfies the differential equation W'(z) =
trA(z)W (z) from which the conclusion (16.39) follows. The expansion
by cofactors of W(z) yields

x) = Z Pij (.T)AZJ (JE), (1640)

where ¢;;(x) is the jth element of ¢,;(x) and A;j(x) is the cofactor
of W(x) (see Sect. 18.1.7 for the definition of the cofactor). Note that
A;j(x) does not contain the term ¢;;(x). Hence, if W(x) given in
(16.40) is regarded as a function of the ¢;;(x), we have OW/dy;; =
A;;(z) and, by the chain rule,

Z %a :Z Zwm : (16.41)

1]1 =1 |j=1

We define W;(z) as

or(z) e o1 ()
Wi(z) = det | @i (z) - - Cin(7) |
oni(x) e - )

where all the elements in the ith row are differentiated. Then, the
expression in the square brackets in (16.41) is the expansion of W;(z)
by cofactors, so that

= En: W (). (16.42)
i=1
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Furthermore, since ¢;;(z) = >_7_; air(x)pr; (), we have

o) e ©1n(T)
Wi(x) = det Zzzl aipri(T) <o 22:1 @ik Pk ()
On1(T) oo Onn (1)

Multiply the kth row (k # i) of the left matrix by —a;;(z) and then
add it to the ith row. This process does not change the value of the
determinant W;(z), but gives the relation

@11(I) ...... wln(z)
Wi(x) = det | aspi(x) - -+ aiipin(z) | = ag(x)W(z).  (16.43)
Lpnl(x) ...... @nn(x)

From (16.42) and (16.43), we arrive at the desired result. &

16.3 Autonomous Systems of ODEs

16.3.1 Autonomous System

We noted earlier that an nth-order ODE reduces to the first-order form:

yl(x) Fl(x;y17y27"' 7yn)
d .
y(l')/ = % y2($) _ F2($7y17.y.2.a 7yn) = F(:E,y), (1644)
Yn(T) Fo(z391,92, 3 Yn)

where y(z) and F(z,y) are n column vectors. Particularly important in many
applications is the case where F(x,y) does not depend explicitly on z. Rele-
vant terminology is given below.

& Autonomous system of ODEs:
A system of a first-order ODE of the form

is called an autonomous system, wherein F' does not depend explicitly
on the independent variable x.



526 16 System of Ordinary Differential Equations

If F does depend explicitly on x, the system is said to be nonautonomous.

FEzxample Consider a second-order ODE of the form

Setting y1 () = u(x) and yo () = v/ (z), we have an autonomous system such

V) = g )] = Lt | = @
16.3.2 Trajectory

As a prototype of autonomous systems of ODEs, we consider a two-dimensional
system such that

iy~ 4| _ | Alysye) |
y(t) = [;,2(75)} - [fz(yl,yg)] = f(y), (16.45)

where y1(t), y2(t) are unknown functions on ¢ in some interval I. We assume
that f1(y1,y2) and fa(y1,y2) are defined in some domain D and satisfy the
Lipschitz condition on both y;(¢) and ya(t). If ¢o is any real number and

(Y10, y20) € D for any y190 = y1(to) and y20 = y2(to), the above hypotheses
guarantee the existence and uniqueness of solutions for (16.45),

y1(t) = ¢1(t), va(t) = w2(t),

satisfying the initial conditions

©1(to) = y10, @2(to) = y20-

We now consider a subdomain R of D in which f;(y1,y2) does not vanish.
Then, we have in R the relation

@ _ @ﬂ _ dya /dt _ fa(y1, y2)
dyp dt dyy dyi/dt fi(yi,ye)’

which represents a direction field in (y;-y2)-plane as noted in Sect. 15.1.6.
From the uniqueness theorem, there exists a unique integral curve of (16.46)
in R satisfying the initial conditions. Such an integral curve on (y;-y2)-plane
is called a trajectory of (16.45).

(16.46)

& Theorem: At most one trajectory passes through any point.

Proof This is obvious from the uniqueness of solutions. If not, two or more
trajectories emerge from the crossing point chosen as an initial value
point. ¢
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Remark. When the vector field
_ 7| | il @)
v(z,y) = {xé] = |:f2($1,332)

describes the motion of a point in R, the domain R is called a phase space
of the system (16.45).

16.3.3 Critical Point

Suppose that the autonomous system (16.45) has a time-independent solution
expressed by

p(t)=ceD,
where ¢ = (¢, ¢2) is a constant vector. Then, no trajectory can pass through
the point ¢ (see the theorem in Sect. 16.3.3). In addition, we obviously have

©'(t) =0= f(c).

Conversely, if there exists a point ¢ in R for which f(¢) = 0, then the functions
p(t) = ¢ are solutions of (16.45). The point ¢ is said to be a critical point
(or singular point or point of equilibrium).

& Critical point:
Assume an autonomous system

y'(x) = F(y) foryeD. (16.47)
Then, any point ¢ € D that gives
F(c)=0

is called a critical point of (16.47). Any other point in D is called a
regular point.

16.3.4 Stability of a Critical Point

Let us discuss the stability of a critical point of an autonomous system
(16.45) by analyzing trajectories of its solutions around the critical point.

We assume throughout that the function F(y) is differentiable of the first
order on D, which guarantees the existence and uniqueness of solutions of
the initial value problem (16.45). Then, the solutions of (16.45) can be con-
veniently pictured as curves in the phase space.
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Now we consider a solution ¥ (z) of (16.45) that passes through the point
n for xg, where the distance between m and c is small. Let us now follow
the trajectory that starts at a point n different from vy, but near c. If the
resulting motion 7 remains close to the critical point ¢ for x > z¢, then the
critical point is said to be stable, but if the solution % tends to return to
the critical point ¢ as = increases to infinity, then the critical point is said
to be asymptotically stable. Finally, if the solution v leaves every small
neighborhood of ¢, the critical point is said to be unstable. More precisely,
we have the following definitions:

& Stability of a critical point:
Let ¢ be a critical point of the autonomous system y'(z) = F(y), so
that F'(c) = 0. The critical point ¢ is called:

(i) stable when given a positive ¢, there exists a ¢ so small that
ly(0) —c| <d = |y(z) —c| <e forall z > 0;
(ii) asymptotically stable when for some 0,
ly(0) —c| <0 = lim |y(z)—c|=0;
T—00

(iii) strictly stable when it is stable and asymptotically stable;
(iv) neutrally stable when it is stable but not asymptotically stable; and
(v) unstable when it is not stable.

16.3.5 Linear Autonomous System

An autonomous system y’ = F(y) is called linear if and only if all the
elements F; of F' are linear homogeneous functions of the yg, so that

dyk .

dr =anyi + -+ iy (I=1,---,n).
Hence, a linear autonomous system is just a (homogeneous) linear system of
ODEs with constant coefficients. The analyses for linear systems are generally
useful since we can always replace F;(y) by the linear terms of their Taylor
expansions about a point y = y,, for analyzing their local behavior.

We now discuss in detail the case n = 2 of linear plane autonomous systems

of the form y’ = Ay. Any such system is expressed by

d d
di; — az + by, d—g = cx + dy, (16.48)
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4=(ta)

with a, b, ¢, d being constants. Observe that the simultaneous linear equations

where © = y1, y = y2, and

axr+by = cx+dy = 0
have no solution except
r=y=0

unless detA = 0. We thus see that the origin is the only critical point of the
system (16.48) unless ad = bc.
Relevant terminology is given below.

& Secular equation:
If (x(t),y(t)) is a solution of (16.48), then x(¢) and y(¢) satisfy the equa~
tion:
v’ — (a+d)u' + (ad — be)u = 0. (16.49)

This equation is called the secular equation of the autonomous system
(16.48).

Proof The first equation of (16.48) says that
by = 2’ — ax,

which implies that
2 —ax’ = by'.
We thus have
2" — ax’ = b(cx + dy) = bex + d(2" — ax),
or equivalently,
2" — (a+d)z’' + (ad — be)z = 0.
The proof for y(t) is the same, replacing a with d and b with c¢. &
The secular equation (16.49) has an important property associated with the

nature of the critical point. This is seen by introducing the concept of the
characteristic polynomial P of (16.49) as

—\2 . | a—- A b

P=X —(a+dX+ (ad —bc) = e dn

’ = det(A — ).
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If A\; (j = 1,2) are the roots of P = 0, then there exist nonzero eigenvectors
(xj,y;) such that

ab z;\ _ [ ax; + by, 0\ Z;
cd yi ) \exj+dy; ) U \y; )

From this, it follows that the functions

et (901) and e2t ($2>
hn Y2

are a basis of vector-valued solutions of (16.48). We shall see later that the
nature of a critical point of a system is completely determined by the values
of the roots A1, Ag.

16.4 Classification of Critical Points

The behavior of trajectories of a linear autonomous system

)-GO

near its critical point depends on the eigenvalues of the matrix A, denoted by
A1 and A\o. There are five cases to consider and we discuss each in turn.

16.4.1 Improper Node

We first consider the case where A1 and Ay are real, unequal, and of the same
sign. A critical point for this case is called an improper node. In this case, all
the trajectories approach the critical point tangentially to the same straight
line with increasing ¢.

Example An example of improper nodes is given by

-(206)

The eigenvalues are obviously A = —3, —2 and the corresponding eigenvectors
are (1,0) and (0,1). The general solution to (16.51) is

(1;) e <é>6—2t+62 (?)e—st, (16.52)

The trajectories given by (16.52) for several values of ¢; and ¢ are shown in
Fig. 16.1.
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—6 _4 —2 0 2 4 6

Fig. 16.1. Trajectories associated with the improper node of the system (16.51)

Remark. 1If the eigenvalues are real, unequal, and positive (contrary to the
above example), then the trajectories are similar to those in Fig. 16.1 except
that the directions of the arrows are reversed; in other words the trajectories
recede from the critical point and go off toward infinity.

16.4.2 Saddle Point

We next consider the case where A\ and Ao are real, unequal, and of the
opposite sign. In this case, the trajectories approach the critical point along
one eigenvector direction and recede along the other eigenvector direction.
The critical point in this case is called a saddle point.

Ezxample Assume the system

a(2)=(02) () e

The eigenvalues are Ay = —1,2, and the corresponding eigenvectors are (1,0)
and (1, 3), respectively. The general solution to (16.53) is

(5) :Cl((1)> @_“FCz(;)e%. (16.54)

The trajectories given by (16.54) are shown in Fig. 16.2. As (16.54) consists
of an e~? term and an e?! term, the trajectories approach the origin along the
eigenvector direction (1,0) and recede along the direction (1, 3) as ¢ increases.
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| =
. //))/”/7

Fig. 16.2. Trajectories around the saddle point of the system (16.53)

16.4.3 Proper Node

We next consider the case of two roots of the characteristic equation being
real and equal. This type of critical point is called a proper node.

Ezample We consider the critical point of the system

-G e

The critical point occurs at the origin, with the degenerate eigenvalue being a.
Generally when the eigenvalue A of the characteristic equation is degenerate,
the eigenvector is given by

u(t) = (c1 + eat)e, wv(t) = (c3 + cat)e. (16.56)

Hence, we set A = o in (16.56) and substitute the results into (16.55) to obtain
co = ¢4 = 0. The solution to (16.55) is thus

u(t) = cre™, w(t) = cze™. (16.57)
Eliminating ¢ from (16.57) yields the expression of the trajectories:

v =3y ifer #0
C1
and
u=0 if ¢ =0,

both of which are depicted in Fig. 16.3. The trajectories approach or recede
from the origin, depending on the sign of a.



16.4 Classification of Critical Points 533
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Fig. 16.3. Trajectories around the proper node of the system (16.55)

16.4.4 Spiral Point

So far, we have restricted our attention to cases where the two eigenvalues
are real. Now we consider the case in which the two eigenvalues are complex
conjugates of each other. The corresponding critical point is called a spiral
point or a focus.

Example An example for this case is

-0 e

The critical point is at the origin, and the eigenvalues are AL = —1 £ ¢ with
coresponding eigenvectors (1,1 F 7). The general solution to this system is

u 1 144 1 —1—3
<U>_Cl<1—i>6( 1+)t—|—82<1+i)6( 1=t (16.59)

The result represents a family of curves that spiral into the critical point as
t increases. Real components of the solutions wu(t) and v(t) given by (16.59)
are plotted in Fig. 16.4.

16.4.5 Center

The final class of critical points is called a center, for which the two eigenval-
ues are pure imaginary. In this case, trajectories consist of a family of closed
loops centered about the critical point.
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Fig. 16.4. Trajectories for the spiral point of the system (16.58)

Ezxample Consider the system

-(400)

The eigenvalues and corresponding eigenvectors are Ay = +i and (1414, —1),
and the general solution reads

(U>:c1<_1>et+62<_1>e " (16.61)

Figure 16.5 shows several trajectories for different values of ¢; and ¢o. All the
trajectories represent periodic motion about the critical point.

16.4.6 Limit Cycle

Before closing this section, we have one more topic to discuss. Consider the
system

x’:x+y—x(ﬂc2+y2),
Yy =—z+y—y@@*+y°). (16.62)

The only critical point is at the origin. Letting x = r cos and y = rsin @, the
system (16.62) becomes

r'=r(l-r?) and 0 =-1. (16.63)
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Fig. 16.5. Periodic trajectories for the center of the system (16.60)

The system (16.63) has a trivial solution of » = 1, § = —t + const, which
represents periodic clockwise motion around the unit circle. We can find other
solutions by solving (16.63). The equation for r is easy to solve, yielding

1

2 b
e
o

where r(0) = ro. Figure 16.6 shows r(t) plotted against ¢t for ro > 1 and
ro < 1. The trajectories spiral in toward the unit circle as t — oo if g > 1

r(t) =

2~

-2 1 . 1 . 1 L 1 N 1
-1 0 1 2 3

Fig. 16.6. Converging behavior of solutions of the system (16.62) to a limit cycle
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and they spiral out toward the unit circle as t — oo if ry < 1. Hence, all the
trajectories spiral into the unit circle as t — oo.

The unit circle mentioned above is called a limit cycle. Limit cycles are
important for determining the stability of the system, since the existence of a
limit cycle ensures the existence of periodic solutions to a system.

Exercises

1. Consider the system given by
2’ = e* + sin 5y — cos 2y,
y = x +2siny.

Find the equilibrium point and describe the stability of the system around
the point.

Solution: Expanding all functions on the right-hand side around =z =
0, y = 0, we have

' =+ 5y +g(z,y),
Y =x+2y+ h(z,y).

The functions g, h converge to zero faster than /x2 + 32, and the
characteristic equation becomes

-A+1 5
1 =A4+2

-

whose roots are (3++/21)/2. Both of these are positive and the system
is unstable. &

16.5 Applications in Physics and Engineering

16.5.1 Van der Pol Generator

As a physical example of a system in which a limit cycle may occur, we
consider the following electric circuit consisting of a coil with inductance L
and a condenser with capacitance C' attached to a tunnel diode . A tunnel
diode is a nonlinear element in the sense that it exhibits nonlinear current—
voltage characteristics:

I(V) =1y —a(V = V) + b(V — Vp)3. (16.64)

It follows from Fig. 16.7 that a tunnel diode behaves like an ordinary resistor
at low and high voltages, but like a negative resistor at intermediate voltages.
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V,=2.0, I,=4.0
CI1
1 =
o
I(V) 5
(@]

Voltage V

Fig. 16.7. Left: An electric circuit consisting of a coil with inductance L, a condenser
with capacitance C, and a tunnel diode. Right: Plot of the nonlinear current—voltage
characteristics I(V') of the tunnel diode

Thus, a tunnel diode is expected to amplify small oscillations in the system,
provided we choose the parameters in an appropriate manner.

The equation of motion for the LC circuit attached to a tunnel diode is
obtained as described below. The law of the conservation current flow
ensures that

I+ I(V)+1c =0, (16.65)
where ) av
I, = Z/th and Io = CE. (16.66)

Substituting (16.64) and (16.66) into (16.65) and then differentiating with
respect to time, we get

2Vl o dV
W+6[—a+3b(V—Vo)]E+wOV:O,

where we introduce the resonant frequency wy defined by the equation w3 =
1/(LC). For simplicity, we define a new variable

V-V
r=—

for which

) (16.67)

with
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Fig. 16.8. Trajectories for the Van der Pol equation (16.68) with the parameter
w=0.3 for (a) and p = 3.0 for (b)

Equation (16.67) can be further simplified by replacing = by 2/+/8 and intro-
ducing a new time variable t = wyt. Hence, we finally obtain

F—p(l—aHi4+2z=0 (16.68)

with the following key parameter:

The nonlinear differential equation (16.68) is known as the Van der Pol
equation. As shown below, it describes self-sustaining oscillations in which
energy is supplied to small oscillations and removed from large oscillations,
which gives rise to the limit cycle in the phase space.

We can observe the self-exciting behavior of the system governed by (16.68)
in the phase space plot in Fig. 16.8, where we set p = 0.3 and ¢ = 3.0 for
various initial points @ = (z(t = 0), Z(t = 0)). We see that all the trajectories
starting at a point @, inside (or outside) a closed contour C' move outward (or
inward) as ¢ increases and then converge to the contour C; such a characteristic
closed contour is known as the limit cycle of the system. The shape of the limit
cycle depends on the value of u, as is evident from Fig. 16.8.
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Partial Differential Equations

Abstract Broadly speaking, there are three classes of partial differential equations
that are relevant to mathematical physics, as reflected in the section titles of this
chapter. After examining the basic properties common to all the abovementioned
classes of equations, we devote the balance of this chapter to a discussion of the
mathematical essence of each class.

17.1 Basic Properties

17.1.1 Definitions

In this section we present the basic theory of partial differential equations
(PDEs), an understanding of which is crucial is for describing or predicting
the realm of nature. The formal definition is given below.

& Partial differential equations:
A partial differential equation of order r is a functional equation of the
form

2
ou Ou ou 0*u ):07 (17.1)

F xl :L‘Q ... xn'__... —_— s ..
) ) ) ,axlv 8$2’ 761'”7 856%’

which involves at least one rth-order partial derivative of the unknown
function uw = u(x1,xe,- -+ ,xz,) of independent variables z1,za, - , Zy,.
In this chapter we often denote partial derivatives with subscripts such as

0%u

T = Uy = 0,0y,
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We also use the shorthand

0 0?
Then, the general form (17.1) of a PDE is expressed as
F(x,y, - U Uy, Uggy Uggyy - -+ ) = 0, (17.2)
where v = wu(z,y,---) is the unknown function of independent variables
x,y,---. A solution (or integral) of a PDE is a function ¢(z,y,---)

satisfying equation (17.2) identically, at least in some region of the indepen-
dent variables z,y, - -.

17.1.2 Subsidiary Conditions

The general solution of (17.1) depends on an arbitrary function. This state-
ment is valid even for higher-order PDEs, indicating that a PDE has in gen-
eral many solutions. Hence, in order to determine a unique solution, auxiliary
conditions must be imposed. Such conditions are usually called initial con-
ditions on time or boundary conditions for positions.

Initial condition:

In physics, an unknown function in a PDE usually involves independent
variables of time ¢ and position x,y, - - - . Initial conditions for an unknown
function are imposed on a particular (initial) time ¢ = ¢y for an unknown
function and/or its time derivatives.

Boundary condition:

Boundary conditions are imposed for an unknown function at the bound-
ary or the infinity of a domain D in which the PDE is valid and are classified
into two cases:

1. Dirichlet condition is the case in which an unknown function u is
specified on the boundary of the domain D (often denoted by D),
where u is a function of time ¢ and position z,y, - - .

2. Neumann condition is the case in which the normal derivative of an
unknown function du/9n is specified.

17.1.3 Linear and Homogeneous PDEs

A PDE is called linear if and only if the F of (17.1) is a linear function of u
and its derivatives. First we assume a first-order PDE with two independent
variables z and y, whose general form reads
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F(z,y; u,ug,uy) = 0. (17.3)
Then, if it is linear, (17.3) can be expressed by
a(z,y)ue + b(z,y)uy + c(z,y)u = g(z,y), (17.4)

where a, b, ¢, and g are given functions of =, y. Using the operator L, we
express (17.4) by a simple form such that

Lu(z,y) = g(z,y), (17.5)
where the operator L is defined by

L =a(z,y)0; + b(z,y)0, + c(z,y).

The linearity of PDEs guarantees that for any function u, v and any constant
¢ the relations hold for

L(u+v)=Lu+ Lv, L(cu) = cL(u).

Examples

Upg — € TUyy =0 (linear)
Uy — € Uy, =sinz  (linear)
Uty + Uy =0 (nonlinear)
zuy +yu, +u® =0  (nonlinear)

A linear equation is said to be homogeneous if the equation contains

either the dependent variable u or its derivatives uz, uy,- -+, not an indepen-
dent variable such as z,y, - - - . For instance, the PDE (17.5) is homogeneous if
g(z,y) =0,

since the equation

Lu(z,y) =0 (17.6)
involves only u, uz, u, and not  or y. On the other hand, if g # 0 in (17.5), it
is called an inhomogeneous (or nonhomogeneous) linear equation. These
statements are generally valid even for higher-order PDEs.

17.1.4 Characteristic Equation

We consider a first-order homogeneous linear PDE of the form
a(z, y)Opu(z,y) + b(x,y)0yu(x,y) =0, (17.7)

which is the most simple (and thus pedagogical) class of PDEs. In general,
solutions of PDEs are described by arbitrary functions f(p) of a particular
independent variable p, wherein p = p(z, y) is some combination of independent
variables z and y. We verify this statement for the case of (17.7).
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By the chain rule on the derivative, we have

8u_8pﬁ 8u_@ﬁ

e — = . 17.8
Oxr Oxdp’ 0Oy Oydp (17.8)
Hence, the PDE (17.7) can be rewritten in the form
9p Ip| df
— +b — =0 17.9
a(z.y)5, @Y | g (17.9)

This implies that the function form of f(p) may be arbitrary if p = p(z,y)
satisfies the equation

o )
a(w;)% + b(w,y)a—z = 0. (17.10)

Therefore, an arbitrary function f(p) such that the p satisfies (17.10) serves
as the solution of the original PDE of (17.7). [The case of df/0p = 0 gives a
trivial solution of f(p) = u(x,y) = const, which we omit below.]

To obtain the solution p = p(x,y) of the equation (17.10), we tentatively
suppose that the function p = p(z,y) takes a constant value along a curve
C: y=y(x) on the (x-y)-plane. Then, the total derivative of p on the curve
C should vanish, so that

:@der@

dp Ox y

dy = 0. (17.11)

From the correspondence between (17.10) and (17.11), we see that these are
equivalent provided that

dy _ b(z,y)
dx  a(z,y)

, alx,y) #0. (17.12)

This is called the characteristic equation of the PDE (17.7) and its solution
y = y(x) is the characteristic curve of (17.7). From (17.11) and (17.12),
therefore, we obtain the desired function form of p = p(z,y) that makes an
arbitrary function f(p) the solution of the original PDE.

Ezamples We evaluate a general solution for (17.7) in the case that a, b are
constant and nonzero coefficients. From (17.11) and (17.12), we obtain the
characteristic curve (line) p = bz —ay. Then a general solution takes the form

u(z,y) = f(p) = f(bxr — ay), (17.13)

where f is an arbitrary function. The solution can be easily checked by tak-
ing derivatives using (17.8) and substituting those into (17.7). A less trivial
example is given in Exercise 1.
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17.1.5 Second-Order PDEs

The general form of second-order linear PDEs is

D aij(ar, e, w0)0i0m + Y ai(@y,we, e, 2n)0u
ij=1 j=1
+ao(z1, T, xp)u = g(x1,T9,  + ,Ty), (17.14)

where the unknown function u depends on n-independent variables denoted
by x1,22, -+ ,2,. Note that a;; = a;; since the mixed derivatives are equal.
The form of (17.14) represents a very large class of PDEs. Among them, we
restrict our attention to the case g = 0 with real constant coefficients, namely,
second-order linear homogeneous PDEs. The general form of linear PDEs of
second-order involving n independent variables with real constant coefficients
is written as

Z a;j0;0ju + Z a;0;u + apu = 0. (17.15)
4,j=1 j=1
The linear transformation of independent variables @ = (z1,22, - ,Zy,)

toy = (y1,Y2, - ,Yn) is given by
y = Bz, (17.16)

or equivalently,
n
Yk = Z brmTm,
m=1
where the by, are elements of the n x n matrix B. Using the chain rule on

the derivative, we have
DI
(“)xj ox; 8yk

and

- 0

Hence, the first term of (17.15) is converted to

n

> ai0i0u= > (bitijbm;) Ok,

ij=1 k,m=1

which leads the relation

aij = Y briijbmg. (17.18)
k,m=1
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Thus we obtain the PDE with new variables y1, 42, -+ , y» by the transforma-
tion A — B*AB, where B! is the transpose of B.

The appropriate choice of the matrix B makes it possible to diagonalize
A such that

C1
Co 0
B'AB = ) ,
0o -.
Cﬂ,
where ¢q,cs, -+ , ¢, are the real eigenvalues of the matrix A. Thus, any PDE

of the form (17.15) can be converted into a PDE with diagonal coefficients in
terms of a linear transformation of a set of independent variables such as

i Cit— zn: Ty = (17.19)

=1

& Theorem:
By linear transformation of independent variables, the equation (17.15)
can be reduced to the canonical form (17.19).

17.1.6 Classification of Second-Order PDEs

We can classify the types of PDEs depending on the positive or negative values
of the coefficients ¢y, co, - , ¢, in (17.19) for the case d; = 0.

1. Elliptic case:
If all the eigenvalues cy,cs,- -+ ,c, are positive or negative, the PDE is
called elliptic. A simple example is given by

@_’_@_’_ =0
Ayt dy; o

2. Hyperbolic case:
In this case none of the {¢;} : i =1,2,--- ,n vanish and one of them has

the opposite sign from n — 1 than the others. For example,
Pu 0%u ~0
oyt Oy; o

3. Parabolic case:
If one of the {¢;}, i =1,2,--- ,n is zero and all the others have the same
sign, the PDE is parabolic.
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Below are basic PDEs in physics classified by the definition given above:

Laplace equation: A,u =0, (17.20)
Wave function: uy = Apu, (17.21)

Here A,, means the Laplacian defined by A,, = 07 + 03 + - -+ 02. The other
important equation takes the form

u = Anu, (17.22)

which we call the diffusion equation. The diffusion equation is different
from the wave equation, where the time reversal symmetry ¢ — —t holds. All
of these equations (17.20)—(17.22) are linear since they are first degree in the
dependent variable wu.

Exercises

1. Find a general solution of the PDE of u = u(z,y) given by
uy + 22y*u, = 0. (17.23)

Solution: The characteristic equation of (17.23) reads dy/dz =
22y%, which has the solution y = 1/(p — 2?). Hence, we have
p =12+ (1/y), i.e., the general solution is given by

u(z,y) = f <x2 + ;) .

In fact, u(x,y) is a constant on the characteristic curve y = 1/(p—
2?) whatever value p takes, as proved by

s o,
da:u

d 1 7@+ 2z Ou _ Ou 9 50U
Ox (p—a2)20y Ox 4 oy

P —
ap_xg

and similarly we have du/dy =0. &

2. Classify second-order PDEs in two independent variables whose general
form is given by
8§u + 20120, 0yu + aggaju =0, (17.24)

where a1, ags are real constants.

Solution: By completing the square, we can write (17.24) as

(02 + a120y)°u + (a2 — aiy)dou = 0. (17.25)
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Here, let us introduce the new variables z and w by the linear
transformation of the form z = 2, y = a122 + (a2 — a?,)'/?w. We

then have
o 0 0 o 2 \1/2 0
0z Oz +a128y’ ow (022 = aiy) oy’
so that for the case azs > a?, (17.25) gives
o T,
022 ow?

This is the elliptic case and is called the Laplace equation in the
zw-plane. We easily see that for (17.25) the hyperbolic case is ob-
tained for ass < a2,. Thus, the second term of (17.25) determines
the types of PDEs. &

17.2 The Laplacian Operator

17.2.1 Maximum and Minimum Theorem

We describe the fundamental properties of three operators, the Laplace, dif-
fusion, and wave operators. These three operators are of great importance in
the theory of PDEs. We begin with a description of the Laplace operator
(or simply Laplacian) A,, on R" defined by

i=1

where n is a positive integer. The Laplacian is not only important in its
own right, but also forms the spatial component of the diffusion operator
Lp = 0, — A, and the wave operator Ly = 07 — A,,, whose properties are
discussed in Sect. 17.3 and 17.4.

First, we explain the maximum principle for the Laplace equation
given by

Apu(x) =0,
whose solutions are called harmonic functions. Obviously, the one-dimen-
sional case (n = 1) is trivial, so we consider the case where n > 1. Let

D be a connected open set and u be an harmonic function in D with sup
u(x) = A < oo for x € D.

® Maximum and minimum theorem:
The maximum and minimum values of u are achieved on 0D, say the
boundary of D, and nowhere inside.
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Before going to the proof, we examine certain properties of the solutions of
Poisson’s equation expressed by

Apu(z) = —4mp(x). (17.26)

® Lemma:

If the function p() in Poisson’s equation (17.26) is positive (or negative)
at a point xg, then the solution of (17.26) cannot attain its maximum (or
minimum) value at the point .

Proof (of the lemma): If the function u(x) satisfying (17.26) at-
tains a minimum at a point xg, then it should attain a minimum with
respect to each component x1,x9,--- ,x, separately at that point.
Then all the second-order derivatives of u would have to be non-
negative, which means that the left-hand side of (17.26), i.e., the
sum of the second-order derivatives would have to be nonnegative.
This result contradicts our hypothesis that p(x) in (17.26) is positive.
Hence, the first part of the lemma has been proved. The second part
of the lemma is proved in a similar manner by assuming that p(x) is
negative. &

We are now ready to verify the maximum and minimum theorem.

Proof (of the maximum and minimum theorem): The proof is
by contradiction. We first assume that

u(xo) > up + €,

where uy, is the value of the function u(x) at an arbitrary point on the
boundary of the defining domain D. We further assume the function

v(@) = u(z) + (@),

where
2 2
r(z)” = |z — x|

and 7 is some positive constant. It then follows that
Apv = Apu+ 2nn = 2nn,

which says that the v(x) is a solution of Poisson’s equation (17.26)
with negative p(x). Note that v(xg) = u(ap) and by hypothesis

u(zg) > up + 6= vy + & —nr.
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Choosing 7 to be so small that throughout D

9 €
gE—mr >§,

we obtain

€
v(xo) > vy + 2

which implies that v attains its maximum somewhere within the do-
main D. This clearly contradicts the lemma above, so our assumption
at the beginning of the proof was false. &

17.2.2 Uniqueness Theorem

The following theorem establishes the uniqueness of the solution of the
Dirichlet problems for the Laplace equations.

& Uniqueness theorem:
If it exists, the solution of the Dirichlet problem for a Laplace equation
is unique.

Proof Suppose that w; and us are solutions on D for the Dirichlet problem
such that
Apu= f(x) in D,

u=g(x) on dD.

Let w = uy — ug, then A,w =0 in D and w = 0 on dD. By the maximum
(or minimum) principle, the point @, (or ;s) that minimizes (or maximizes)
w(x) should be located on the boundary of D. Hence, we have

0=w(xy) <w(@) <w(xpy)=0

for all x € D, which means that w =0 and u; = us. &

17.2.3 Symmetric Properties of the Laplacian

The Laplacian is invariant under all rigid transformations such as translations
and rotations. A translation from x to a new variable «’ is given by

' =x+a,
where a is a constant vector in n-dimensional space. The rotation is expressed

by
z' = Bz, (17.27)
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where B is an orthogonal matrix with the property BB' = B!'B = I.
Invariance under translations or rotations means simply that

s
2= 2
= 97 o 07

The proof for translational invariance is simple, so we leave it to the reader.
In physical systems, translational invariance is apparent because the physical
laws are independent of the choice of coordinates.

A rotational invariance under (17.27) is proved by using the chain rule on
the derivative such that

o2 02 02 92
ot 2 %:b““bj’“ax;ax/j =20 o', d!, 2 92’

ij i=1

where we have used the relation

> bikbjk = (BB')i; = ij.
k

Thus the proof has been completed.
Rotational invariance suggests that a two- or three-dimensional Laplacian
should take a particularly simple form in polar or spherical coordinates.

Exercises

1. Find the harmonic function for a two-dimensional Laplace equation that
is invariant under rotations.

Solution: The two-dimensional Laplacian in polar coordinates is
given by

0? 10 1 92
or? + ror + r2 092
where we seek for solutions u(r) depending only on r. Then we
take the radial part of the Laplace equation, which gives u,, +
%ur = 0 (r > 0). This is the ODE whose solution is given by
u(r) = alogr+b (r > 0), where a, b are constants. Note that the
form of the function log 7 is scale invariant under the dilatation
transformation » — cr for a positive constant c¢. &

AQZ (7’>0),

2. Find the harmonic function in three dimensions that is invariant under
rotations.
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3.
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Solution: The Laplacian in spherical coordinates takes the form

92 20 1 o (. ,0 1 0?
A3 —t (Sln'l?) m@

T o2 ror rZsind ol 09 (r>10).

Since the solution depends only on r, we have the Laplace equation
given by wu,,. + %ur =0 (r > 0). So we have (r?u,.), = 0 and the
solution becomes u = % 4 b (r > 0), where a, b are constants.
This is an important harmonic function that is not finite at the

origin. &

Show that, for an arbitrary integer n > 2, the general form of solutions
with rotational symmetry is given by

u(r) =ar* " +b (n>2,r>0), (17.28)

where a, b are constants.

Solution: This is shown by applying the chain rule to the deriva-
tive such that

Anu(r) = iai [ﬂu’(r)} = zj: [fgu”(r) + %u’(r) — i—zu'(r)
n—1

= (r) + (7)), (17.29)

r

where the relation Or/dz; = x;/r is used. If A,u = 0, (17.29)

yields
u'(r)  1—-mn

u'(r) r

Integrating twice, we have (17.28). &

17.3 The Diffusion Operator

17.3.1 The Diffusion Equations in Bounded Domains

The diffusion equation describes physical phenomena such as Brownian
motion of a particle or heat flow, whose general form is written as

LDU(,ThLL'Q,--' ,t) = 0, (1730)

where Lp is the diffusion operator defined by

Lp=0,-Y 0. (17.31)
=1

If the scale transformation ¢ — Dt is used, we have the diffusion equation
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Ou — DAu =0,

where D is the diffusion constant. For heat flow u represents the tempera-
ture at position & = (x1, 2, - ) and time ¢, and for Brownian motion u is the
probability of finding a particle at  and t. Hereafter, we treat the system of
the unit diffusion constant D = 1. If we have to go back to the actual diffusion
equation, we do the transformation ¢ — Dt in the final solution.

17.3.2 Maximum and Minimum Theorem

We begin by describing the maximum principle for the diffusion equation
defined in a bounded domain, from which we deduce the uniqueness of initial
and boundary value problems.

® Maximum and minimum theorem:

Let D be a bounded domain in R™ and 0 < ¢t < T' < 0. If u is a real-
valued continuous function, it takes its maximum either at the initial value
(t = 0) or on the boundary 9D.

Proof For any € > 0, we set
v(x, t) = u(w, t) + e |z)?,
for which we have
vy — Apv = —2ne < 0. (17.32)

If the maximum for w occurs at an interior point (xg, to) in the domain
D x [0,T], we know that the first derivatives vs, vz, ,Vsy, - -+ of v vanish there
and that the second derivative Av < 0. This contradicts (17.32), so there is
no interior maximum. Suppose now that the maximum occurs at t = T on D;
the time derivative v; must be nonnegative there because

’U(CC(),T) > ’U(ﬂ?o,T — 5)

and
Av <0,

which again contradicts (17.32). Therefore, the maximum must be at the
initial time ¢ = 0, namely, D x {0} or the boundary dD. Replacing u by —u,
we see that the minimum is also achieved on either D x {0} or 0D. &

17.3.3 Uniqueness Theorem

The maximum principle can be used to prove uniqueness for the Dirichlet
problem for the diffusion equation. The conditions are given by
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Lpu= f(x,t) on D x (0,00)
u(x,0) = g(x), u(z,t)=h(t) on 0D

for given functions f, g, and h.
The following is an immediate corollary of the maximum and minimum
theorem.

& Uniqueness theorem:
There is at most one solution of the Dirichlet problem for the diffusion
equation.

Proof Let u(x, t) and v(x,t) be two solutions of (17.33) and w = u—v be their
difference. Hence, we have Lpw = 0, w(x,0) = 0, w(0,t) = 0, w(x,t) = 0
on 0D. By the maximum principle, w(x,t) has its maximum at the initial
time or the boundary, exactly where w vanishes. Thus w(x,t) < 0. The same
reasoning for the minimum shows that w(xz,t) > 0. Therefore w(x,t) = 0, so
that u=v forallt>0. &

17.4 The Wave Operator

17.4.1 The Cauchy Problem

The wave operator (or d’Alemberian) on R™ x R is expressed by
L=0;—A,=0;-> 8, (17.33)
i=1

from which we have the wave equation in the general form
Lu = 0?u — Apu = 0. (17.34)

The wave equation is the prototype of the hyperbolic PDEs and describes
waves with unit velocity of propagation in homogeneous isotropic media. By
making the transformation ¢ — ct, we have the standard form of the wave
equation

0P — *Au =0, (17.35)

where ¢ is the wave velocity. The solution for (17.35) is obtained by trans-
forming the time variable ¢ into ¢t in the result of (17.34).

The initial value problem for the wave equation is called the Cauchy
problem and is given by the inhomogeneous wave equation

Otu(z,t) — Apu(z,t) = f(wx,t) (17.36)
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under the two initial conditions

where f, ¢, 1 are continuous and differentiable given functions. For example,
f(x,t) provides an external force acting on the system described by (17.36).

The wave operator (17.33) is a linear operator, so the solution is the sum
for the general solution of the homogeneous equation (17.34) and a particular
solution for the inhomogeneous equation (17.36).

17.4.2 Homogeneous Wave Equations

First, we provide the solution for the one-dimensional homogeneous version
(f = 0) of the Cauchy problem (17.36), in which the spatial part is defined on
the whole region of one dimension —co < & < co. For example, consider the
case of an infinitely long vibrating string. The wave equation is written as

Ugt — Ugg = 0, (17.37)

which is a hyperbolic second-order PDE that we can express by
0 0 0 0

Up + Uy = 0, (17.39)
then the first-order PDE for v(t, ) is obtained from (17.38) as

Let us set

vy — vy = 0. (17.40)

As shown earlier, (17.40) has a solution of the form
v(z,t) = g(x + 1), (17.41)
where g is any function. Thus we must solve (17.39) for u, which is given by
us +u, = gz +t). (17.42)

One solution of (17.42) takes the following form:
u(z,t) = h(z + t), (17.43)

which we can check through direct differentiation of (17.43) by setting p = x+t

such that
Ou dhdp ¥

dx — dpdx
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Ou _dhdp _ B

ot dp ot
Then we have
1 P
h(p) = 5/ g(p)dp. (17.44)

Another possibility is the general solution of the homogeneous equation
obtained by setting g = 0 in (17.42), which takes the form

u=z(x —1). (17.45)

Adding this to (17.44), we have the general expression of a solution,

u(x,t) = h(z+t)+ z(z —t). (17.46)

Now let us solve (17.46) under the initial conditions

where ¢ and v are given functions of . From (17.46), we have the relations
o(x) = h(z) + 2(x), (17.47)
P(z) = b (z) — 2/ (). (17.48)

By differentiating (17.47), we obtain ¢’ = h'+2’. Combining this with (17.48),

we have

h
h

/_1 ’ /_1 o
W=S0+0), =50 - ).

Integrating on p yields

P
y(p) = %¢(p)+ %/0 Ydp + a,

P
) = 500) +3 [ vdp—a

So, we get

N

1 x4+t
ue ) = 3 lole 0 +ole—0l+5 [ (17.49)

which is the solution for the initial value problem for the homogeneous equa-
tion (17.37).
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17.4.3 Inhomogeneous Wave Equations

Next we solve the initial value problem for an inhomogeneous PDE (f # 0)
by applying the method of characteristic coordinates. We transform the
variables z,t into new variables £ = x + ¢, n = x — t. The wave equation for
the new variables yields

O, Deu — — f<£+77 £ - n).

2
This equation can be integrated with respect to 7, leaving £ as a constant.

Thus we have

1 n
ug = —1/ fdn, (17.50)

where the lower limit of integration is arbitrary. Again we can integrate with

u(é,n) = ”// (gﬂ‘ £2n>dd£ (17.51)

Here we consider the dependent variable u at a fixed point (£g,70) defined
by

respect to &:

& =x0 +to, Mo =z — to. (1752)
We can evaluate (17.51) at the point (£, pto) and make a particular choice of

the lower limits such that

eon) =5 [ [ rande

Here we change the variables £, 7) into the original ones («, t), and the Jacobian

is the determinant of its coefficient matrix:

(G
J=det| % | 2o,
on I
oxr Ot

Thus dédn = Jdxdt = 2dzdt, so the double integral can be transformed as

to :Co+(t0 t)
u(wo, to) / / f(z, t)dzdt
xo—(to—1)

As a result, we have the following theorem:
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& Theorem:
The unique solution of (17.36) on one spatial dimension is given by

u(z,t) = 3 [p(z + 1) + Pz = 1)]

z+(t— t)
/ Y(p)dp + = / / (2, t")dx'dt’,
(t—t")

where ¢(x) = u(x,0) and ¥ (z) = u(z,0).

N | =

17.4.4 Wave Equations in Finite Domains

In this section we attempt to solve the wave equations defined in the region
D x (0,00), where D is the bounded domain of R". For this problem, we have
to specify the initial con